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Monetary policy is made in an environment of substantial 
uncertainty. Consequently, academic researchers have sought to 
formally demonstrate the implications of uncertainty, as well as the 
ways in which central banks can manage it. The theoretical literature 
on uncertainty distinguishes between three types: additive uncertainty 
refers to central banks’ lack of knowledge on the shocks the economy 
will face in the future; multiplicative uncertainty represents the lack 
of knowledge, or the erroneous knowledge, on one or more parameters 
of the behavioral model of the economy; and data uncertainty is 
associated with the fact that the information used by the central 
bank at the time policy decisions are made could be incorrect or could 
incompletely reflect the actual state of the economy. The objective 
of this paper is to review the quantitative relevance of these three 
types of uncertainty in the Central Bank of Chile’s monetary policy. 
The paper is divided into two parts: the first covers the problem of 
data uncertainty and focuses on the output gap estimates for the full-
fledged inflation-targeting period (1999 onward); the second centers 
on additive and multiplicative uncertainty for the period 1990–2006, 
with a special emphasis on the period after 1999.
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Our analysis of data uncertainty focuses on the output gap because 
of its importance in forecasting inflation and because only preliminary 
figures for real output (real-time data) are available when monetary 
decisions are made. Also, the estimation of the output trend (part of the 
output gap) depends on statistical filters applied to output series, which 
contain these preliminary figures. For our exercise, we use several well-
known univariate filters: the Hodrick-Prescott (HP) filter, the Baxter-
King (BK) filter, the Christiano-Fitzgerald (CF) filter, the quadratic 
trend, and the Clark method based on the unobserved components model. 
To analyze their reliability and statistical accuracy with real-time data, 
we follow the methodology proposed by Orphanides and van Norden 
(1999). We find that revisions of the output gap in the case of Chile 
are important and persistent, and that correlations between the final 
data output gap and the real-time data output gap are relatively low. 
Nonetheless, the Clark method produces the best results, implying that 
caution should be used when evaluating the business cycle with real-time 
data and that using popular filters, like HP, could be misleading.

To evaluate the empirical importance of additive and multiplicative 
uncertainty, we use the methodology proposed by Zhang and Semmler 
(2005) to estimate behavioral equations for the Chilean economy with 
time-varying parameters and shocks with state-dependent variance (two 
states), which follow a first-order Markov process. To estimate behavioral 
equations, we use a slightly modified version of the forward-looking 
specification of Svensson (2000) and Al-Eyd and Karasulu (2008) for the 
equations that govern the behavior of a small open economy—namely, 
aggregate demand, the Phillips curve, and the real uncovered interest 
parity condition. We also use a technique from Kim (1993) to decompose 
total uncertainty, measured through the conditional variance of the 
forecast error, into two components: that associated with multiplicative 
uncertainty and that associated with additive uncertainty. We find 
that for all the behavioral equations of the economy, the uncertainty of 
shocks (that is, additive uncertainty) has been the most important factor 
in explaining total uncertainty. Moreover, the estimations support the 
hypothesis of state-dependent variances, as well as the hypothesis that 
these states could be considered periods of high and low volatility in the 
shocks. Also, total uncertainty of both the output gap and the inflation 
rate has declined over time, and the period of greatest stability coincides 
with the establishment of the full-fledge inflation-targeting framework 
for the conduct of monetary policy.1 

1. This period also coincides with the establishment of the structural surplus rule 
for the conduct of fiscal policy and with a highly stable international context.
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The paper is organized as follows. Section 1 reviews the literature 
on the types of uncertainty faced by central banks, the implications 
for the conduct of monetary policy, and the way uncertainty is usually 
modeled empirically. In section 2, we analyze the quantitative relevance 
of data uncertainty, focusing on the output gap estimates. Section 3 
explores the importance of additive and multiplicative uncertainty 
in the models typically used to study the effects of monetary policy. 
Finally, concluding remarks are presented in section 4.

1. MoneTary poliCy and UnCerTainTy

In the last few years, academic researchers have become 
increasingly interested in formally demonstrating how central banks 
can deal with uncertainty (Schellekens, 2002; Feldstein, 2003). Some 
papers study the distinct types of uncertainty faced by central banks, 
which introduce important challenges in the modeling of monetary 
policy, and their implications for the behavior of the monetary 
authority. This group of studies includes Isard, Laxton, and Eliasson 
(1999), Martin and Salmon (1999), Svensson (1999), Wieland (2000), 
Meyer, Swanson, and Wieland (2001), Tetlow and von zur Muehlen 
(2001), Giannoni (2002), Orphanides and Williams (2002), and 
Söderström (2002). Other papers propose different strategies for 
managing uncertainty, such as robust monetary policy rules and 
learning mechanisms. Examples include Craine (1979), Holly and 
Hughes Hallett (1989), Basar and Salomon (1990), Bertocchi and 
Spagat (1993), Balvers and Cosimano (1994), Sargent (1998), Onatski 
and Stock (2002), and Wieland (2000).

Feldstein (2003) argues that central banks typically face four types 
of uncertainty: uncertainty about the current and future states of the 
economy, uncertainty about how the economy operates, uncertainty 
of individuals about their personal futures, and uncertainty about 
the impact of potential future monetary policies. However, the most 
common classification defines three types of uncertainty: additive 
uncertainty, multiplicative uncertainty, and data uncertainty.2 
Additive uncertainty represents the component of a forecast error 
associated with the outcome of an exogenous variable in the system 
(the regression model error). This type of uncertainty captures central 

2. Another type of uncertainty considered in the literature, but not analyzed in this 
paper, is uncertainty about the probability distributions over possible events, known 
as Knightian uncertainty.



454 Felipe Morandé and Mauricio Tejada

banks’ lack of knowledge on the future shocks that the economy will 
face (Zhang and Semmler, 2005; de Grauwe and Senegas, 2006). 
Multiplicative (or parameter) uncertainty, in turn, represents the lack 
of knowledge, or the erroneous knowledge, of one or more parameters of 
the behavioral model of the economy (and its agents). Hall and others 
(1999) claim that this type of uncertainty can occur for several reasons, 
including the stochastic nature of the parameters, measurement 
errors in the data used to estimate the model, and structural changes. 
The distinction between additive and multiplicative uncertainty 
is based on the assumption that the true behavioral model of the 
economy is known. The limitation of this assumption is that total 
uncertainty, which could also result from misspecification of the 
model, is underestimated, so the results of any efforts to quantify this 
uncertainty using a particular specification of the behavioral model 
of the economy should be undertaken with caution.3 Finally, data 
uncertainty is associated with the fact that the information used by the 
central bank at the time policy decisions are made could be incorrect or 
could incompletely reflect the actual state of the economy (Orphanides 
and van Norden, 1999). When these types of uncertainty are combined, 
they weigh heavily on policymakers (Rudebush, 2001). If policymakers 
have no knowledge of the actual state of the economy (regardless of 
whether the uncertainty lies in the data or in the behavior of the 
economy), they must base their decisions on expected outcomes. This 
could generate dilemmas in the adoption of an adequate policy if the 
outcome is not clear (for example, whether the central banks should 
react more aggressively or more passively).

Phillips (1954) and Theil (1964) were the first to introduce the 
idea of additive uncertainty, and their contributions have led to the 
expansion of the literature in this area. Phillips (1954), in studying 
whether the stabilization policy recommendations of simple models 
based on multipliers are appropriate and under what conditions this 
might be the case, showed that in a system that is automatically 
regulated (with flexible prices and interest rates), monetary policy 
could be a suitable instrument for stabilizing the economy, or at 
least for maintaining the economic system close to its desired values. 

3. Although part of the existing literature defines multiplicative uncertainty as 
the lack of knowledge on the parameters and on the model, the distinction between 
the two is important from a practical point of view. If the distinction is not made, it is 
not possible to separate the concepts of additive and multiplicative uncertainty, given 
that any specification error affects both the regression error and the magnitude of the 
parameters (bias).
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Monetary policy should also be able to deal with all but the most severe 
shocks. Theil (1964) expanded on Phillips (1954) by assuming that the 
policymakers choose their policy by maximizing a quadratic expected 
utility. He found that in a world where there is only uncertainty in 
shocks, policymakers could conduct their policy as if there were total 
certainty regarding the possible outcomes of the economy. This result 
is known as certainty equivalence and has important implications for 
monetary policy. 

The period in which Philllips and Theil were working was marked 
by a high degree of confidence in econometric modeling, such that any 
error could be eliminated in the estimation of structural models, except 
that associated with additive uncertainty. However, the principle 
of certainty equivalence is valid only under certain conditions, 
specifically those pertaining in a linear-quadratic world. The policy 
implications could therefore differ depending on the assumptions 
adopted regarding the behavior of the central bank (that is, its loss 
function). Walsh (2004) finds that optimal monetary policy rules, 
derived from a quadratic loss function for the central bank, are robust 
under this type of uncertainty and do not require that the monetary 
authority change its rule in the presence of shocks. However, simple 
Taylor reaction functions can generate important increases in the 
central bank’s loss function depending on whether, based on particular 
situations, they require changes in the central bank’s behavior. Sack 
(2000) estimates and simulates a vector autoregression (VAR) model 
for the U.S. economy under different assumptions. He finds that if the 
only source of uncertainty is additive, the U.S. Federal Reserve should 
behave more aggressively than it does in practice. He argues that 
other types of uncertainty, such as multiplicative, generate greater 
gradualism in the Federal Reserve’s monetary policy.

Holt (1962) was the first to analyze multiplicative uncertainty 
(uncertainty in the parameters). While exploring linear decision rules 
for stabilization and growth, he shows that policymakers are only 
able to apply an active stabilization policy when they can adequately 
anticipate the implications of the policies they adopt. Otherwise, they 
would contribute more to the instability of the economic system than 
to its stability. If the way in which the economy reacts is uncertain—
that is, if the parameters of the behavioral model of the economy are 
uncertain—then the performance of monetary policy could be seriously 
affected. The certainty equivalence principle is not valid in this context, 
and the central bank should consider this type of uncertainty when 
making policy decisions. 
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Brainard (1967) uses a quadratic utility function for the 
policymaker, similar to that of Theil (1964), to study the effect of 
uncertainty in shocks and parameters. He finds that the certainty 
equivalence principle is valid if the only source of uncertainty is 
associated with shocks. However, when the economy’s reaction to policy 
actions is unknown (that is, when the model feedback parameters 
are uncertain), the central bank’s behavior is seriously affected and 
it becomes optimal to respond more cautiously to changes in the 
economic system. This result has important practical implications 
for the conduct of monetary policy, since it indicates that it could be 
optimal for policymakers not to expect to completely eliminate the 
gap between the observed objective variable and its target value, 
in a given period. This could be interpreted as a justification for a 
gradual monetary policy. Although Brainard’s (1967) result is quite 
intuitive and is widely discussed in the literature (see Blinder, 1998), 
it cannot be generalized. Papers such as Martin and Salmon (1999) 
and Sack (2000) may provide some empirical validity to Brainard’s 
(1967) work, but other studies show that the results depend on the 
model specification.4 For example, Söderström (2002) shows that when 
the coefficients of the lagged variables in the model are subject to 
uncertainty, the optimal policy could be for the central bank to react 
more aggressively.5 

The study of data uncertainty is relatively new in the literature 
on monetary policy. Academics and policymakers have only recently 
invested resources in studying the properties of real-time data and 
the implications for policy decisions (Bernhardsen and others, 2005). 
Croushore and Stark (2001) were the first to construct a database that 
provides a snapshot of the macroeconomic data available at any given 
point of time in the past, with the objective of showing the implications 
of forecasting with revised and real-time data. In their database, they 
refer to the data for a particular date as vintage and the collection of 
the vintages as the real-time data set. This methodology has been used 
in various empirical applications, which primarily focus on developed 
countries. Examples of studies exploring the implications of real-time 

4. Both Martin and Salmon (1999) and Sack (2000) estimate a VAR model, the 
former for England and the latter for the United States. They show that incorporating 
multiplicative uncertainty in the model could explain the preference for gradualism 
in the central bank’s behavior. 

5. Other examples in support of the argument that multiplicative uncertainty 
does not necessarily lead the central bank to behave more cautiously can be found in 
Giannoni (2002) and Gonzalez and Rodriguez (2004).
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data for monetary policy include Orphanides and van Norden (1999) 
and Orphanides (2001).6 This literature highlights that the moment at 
which the data are obtained, their availability and their reliability for 
the empirical evaluation of policy rules are crucial for monetary policy 
performance, since they condition the decisions of the policymakers 
(Ghysels, Swanson, and Callan, 2002). In this regard, Rudebush (2001) 
and Bernhardsen and others (2005) argue that the new information 
that central banks obtain between two policy meetings does not justify 
drastic changes in the policy instrument, which can lead to very slow 
responses to particular economic events. 

One of the variables that summarize the actual state of the 
economy—and that is thus crucial for monetary policy decisions—is 
the output gap. If potential output measures are not reliable, policy 
decisions may fail to react to the true economic conditions and may 
instead reflect measurement error. Orphanides and van Norden (1999) 
argue that the output gap is associated with important components 
of uncertainty, since central banks typically face at least three types 
of problems when evaluating the business cycle with real-time data. 
First, output data are revised continuously. Second, different methods 
of estimating potential output generally provide different results. 
When trend output is used as a proxy, different filtering procedures 
also yield a variety of outcomes; this problem is particularly critical 
with the end-of-sample estimates that are precisely the most relevant 
for policy decisions.7 Third, a future evaluation of output data may 
indicate that the economy has experienced a structural change, which 
might not have been revealed by real-time data. 

To illustrate these concepts, we consider the following economic 
model based on Zhang and Semmler (2005), which is standard in the 
literature of optimal rules of monetary policy:

min , ,
u

x u
t

E Lt
t t

t{ } =

∞

∞
( )∑

0

0
0

ρ
 

(1)

subject to

xt+1= f(xt, ut, εt), (2)

6. For an excellent literature review for the case of the United States, see Kozicki 
(2004).

7. Kuttner (1994) and St-Amant and van Norden (1998) find substantial differences 
in the estimation of trends using final output data and different estimation methods.
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where ρ is the discount factor bounded between 0 and 1, L(xt, ut) 
is the loss function of an economic agent (in this case, the central 
bank), xt is the vector of state variables, ut is the vector of control 
variables (the policy instrument), εt is the vector of shocks, and E0 is 
the mathematical expectation operator based on the initial values of 
the state variables. This kind of model represents the basic framework 
of monetary policy analysis and control used by Clarida, Galí, and 
Gertler (1999), Svensson (1997, 1999), and Beck and Wieland (2002), 
where the constraints in equation (2) are the Phillips curve, the IS 
curve, and the interest rate parity condition (Svensson, 2000). 

Given the state equations in (2), the central bank’s problem 
consists in deriving a path for its instrument (the control variable 
ut) that satisfies equation (1). The question that arises, however, is 
whether the state equations can be correctly specified with time series 
estimates. Given the previous discussion, the answer to this question is 
no, since these equations can be subject to a high degree of uncertainty 
caused by shocks (εt), as well as to parameter uncertainty and data 
uncertainty. This is particularly important since the optimal monetary 
policy rule is derived from the solution of the previous problem.8 This 
rule therefore depends on the parameters of the state equations. If the 
model parameters are uncertain, the estimated “optimal” monetary 
policy rule could be unreliable.

The brief literature review presented in this section shows that 
the different types of uncertainty (namely, additive, multiplicative, 
and data uncertainty) have important and different implications 
for the conduct of monetary policy. When the economy is faced with 
additive uncertainty, or uncertainty about the shocks it will face, the 
central bank could potentially behave as if it has total certainty about 
the results of its policy; this is known as the certainty equivalence 
principle. This result, however, depends on the type of assumptions 
adopted regarding the behavior of the central bank (its preferences) 
and the structure of the economy, since this principle is only valid 
in a linear-quadratic world and depends on whether the monetary 
authority behaves optimally. With regard to multiplicative uncertainty, 
or uncertainty in the parameters, the fact that the central bank does 
not know how the economy reacts to its policies would, in principle, 
justify a preference for a more gradual monetary policy. There is 
no consensus on this result, however, and the literature shows that 
the assumptions that are adopted in a particular model can lead to 

8. See, for example, Svensson (1999).
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different implications, including a preference for a more aggressive 
policy response. Finally, data uncertainty arises when the data are 
unknown at the moment policy decisions are made, when they contain 
measurement errors (resulting from previous revisions), or when they 
are unobservable. Policy decisions are seriously conditioned to the 
available information. Nevertheless, sudden changes in policy when 
a new set of information becomes known may not be justified, since 
the actual information could present an erroneous notion of the actual 
state of the economy. The literature has sought monetary policy rules 
that are immune to this type of uncertainty, for example, by using 
output growth rates or unemployment level rates rather than the gap 
with respect to their natural values.

2. daTa UnCerTainTy: The oUTpUT gap

To analyze the quantitative relevance of data uncertainty in the 
case of Chile, we focus on the output gap—defined as the difference 
between actual (measured) gross domestic product (GDP) and its 
trend—for the period from 2000 to 2006. We chose this period for two 
reasons: (1) the availability of historical data taken from the output 
series publications at each moment in time; and (2) this is the period 
in which the Central Bank of Chile adopted a full-fledged inflation-
targeting scheme to conduct its monetary policy. We use real-time 
data (that is, data available to the Central Bank at the time policy 
decisions were made) and various well-known methods to estimate the 
output trend. For each method, we analyze the behavior of the end-of-
sample output gap estimates, which are relevant for policy decisions, 
as well as the revisions of these estimates across time. We present 
the statistical properties of the revisions and verify the reliability of 
the estimates for each method. 

The section is divided into two subsections. The first describes the 
methodological issues related to the construction of the output gap 
with real-time data and the detrending methods; the second presents 
the estimation results and their implications.

2.1 Methodological Issues

Monetary policy decisions are typically based on real-time data, 
which are classified as preliminary data (Bernhardsen and others, 
2005). This is also true, to a lesser degree, of very old historical 
data. The preliminary nature of the data calls for it to be in constant 
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revision. As suggested by the Central Bank of Chile9, the data revision 
is motivated by factors such as the inclusion of new basic information 
(resulting from new sources of information or the improvement of these 
sources); the recalculation of the estimates (that is, revisions attributed 
to new estimates);10 methodological improvements (reflecting changes 
in statistical methods, concepts, definitions, or classification); and 
error correction (either in the basic sources or in the calculations). One 
of the variables that encompasses the actual state of the economy and 
that is key for monetary policy decisions is the output gap. At the time 
policy decisions are made, this variable is estimated using preliminary 
output data, so it is necessary to assess the degree of reliability of these 
estimates.11 For this assessment, we use real-time data to replicate the 
available information for the policymakers at every point in time. We 
thus simulate the actual environment of the monetary policy setting 
process (Ghlysels, Swanson, and Callan, 2002). 

To analyze the reliability and statistical accuracy of the output gap 
estimates commonly used in the literature, we follow the methodology 
proposed by Orphanides and van Norden (1999). This consists of 
measuring, at each point in time, the degree to which the output gap 
estimates vary when the data are revised using different output gap 
estimation methods. This allows us to capture the effects caused by 
data revisions and the misspecification of statistical models used 
to estimate the output trend. The advantage of this methodological 
approach is that it does not require a priori assumptions on the true 
structure of the economy or on the process that generated the observed 
output time series. This approach has certain limitations: the analysis 
of the data revisions is based on a comparison of the output level 
observed at the end of the sample at every point in time with the 
“final” output, but there could still be measurement errors.

Orphanides and van Norden (1999) base their approach on two key 
definitions: the final and the real-time estimates of the output gap. 
The final estimate of the output gap is simply the difference between 
the last available vintage of output data and its trend (obtained via a 
detrending method). The real-time estimate, in turn, is a time series 
consisting of the last observed estimate of the output gap constructed 

9. Monetary Policy Report, September 2004.
10.The recalculation of the estimates refers to the updating of either seasonal 

factors or the base period used in the constant price estimates. 
11. If the output gap measures are not reliable, it could be advantageous, in some 

situations, for the central bank to base their monetary policy decisions on information 
on output growth (Orphanides and others, 2000; Bernhardsen and others, 2005). 
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as the difference between the observed output for each point in time 
(each vintage) and its trend. The real-time estimate for each period t 
contains all the revisions available up to that period and represents 
the estimate that the central bank may have calculated at the time 
policy decisions were made. Formally, assuming that we have access 
to the observed output series published at each point in time during 
N periods, we would have a matrix of the form (y1, y2,…, yN), where 
each yi (with i = 1,…, N) is a column vector that contains the output 
time series and where each column is an observation (row) shorter 
than the one that follows it.12 If fdt(⋅) is a function that detrends the 
time series y, the final estimate of the output gap is given by

GAPfinal = ln(yN) – ln[fdt(yN)].  (3)

If we then define the function l(∙) as one that extracts the last real 
observation of the column vector yi, we have the real-time estimate 
of the output gap:

GAPreal-time = ln[ l(y1), l(y2), …, l(yN) ]

 – ln{ l[fdt(y1)], l[fdt(y2)], …, l[fdt(yN)] }’. 
(4)

The difference between the final output gaps and the real-time 
output gaps represents the total revision of the estimates at each 
point in time. The statistical properties of these series of revisions 
inform our evaluation of the reliability and accuracy of the output 
gap estimates. For the estimates drawn from equations (3) and (4), 
it is necessary to define the function fdt(⋅) (the detrending method), 
given that in practice neither the true potential output of the economy 
nor its data-generating process are known. This is important since 
these methods generally provide quite different results. In the case of 
Chile, Gallego and Johnson (2001) find that the set of methods used 
to estimate the trend component of output provide a wide range of 
estimates. The method chosen thus constitutes a source of uncertainty 
in addition to the revisions in the data.

A detrending method decomposes real output yt (measured in 
logarithms) into two components: trend ( yT

t  ) and cycle ( yC
t  ), such that 

yt = yT
t + yC

t  . We consider five alternative univariate methods that 

12. In the matrix (y1, y2,…, yN), we consider the missing observations as imaginary 
numbers. 
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are widely used in the literature: the Hodrick-Prescott filter; the 
Baxter-King filter; the Christiano-Fitzgerald filter; the quadratic 
trend; and Clark’s method based on the unobservable components 
model.13 Table 1 summarizes these methods and the models on 
which they are based. We focus only on univariate techniques 
of detrending, since the use of multivariate techniques requires 
the compilation of information on the data that is not revised (in 
real time) for each possible regressor in the model. Hence, the 
conclusions that are derived from the analysis correspond only to 
the evaluation of the univariate filters used here and cannot be 
applied to other alternative methods such as those used by the 
Central Bank of Chile and in some other papers for Chile (see 
Gredig, 2007; Fuentes, Gredig, and Larraín, 2007).14 

The Hodrick-Prescott (HP) filter is one of the most popular 
detrending methods. It is based on choosing the trend that 
minimizes the variance of the cyclical component of the series, and 
it is subject to penalization for variations in the second difference 
of the cyclical growth component (Hodrick and Prescott, 1997). 
Both the Baxter-King (BK) filter and the Christiano-Fitzgerald 
(CF) filter are based on smoothing the series through the use of 
weighted moving averages. The fundamental difference between the 
two, for the case of symmetric filters as considered in this paper, 
lies in the choice of the objective function that defines the weights 
(Baxter and King, 1999; Christiano and Fitzgerald, 2003). Moreover, 
the Christiano-Fitzgerald filter imposes the restriction that the 
filter weights add up to zero when unit roots are considered. The 
quadratic trend, in turn, is a method of deterministic components 
that assumes that the behavior of the trend series is triggered 
by a second-order polynomial. This method is thus flexible at the 
moment of detecting slow trend changes.15 Finally, the unobserved 
components model allows us to specify the data-generating processes 
for the output time series and use these to identify the trend and 

13. See Orphanides and van Norden (1999) for an extensive revision of the 
detrending methods and its principal advantages and disadvantages. See Gallego and 
Johnson (2001) for an interesting compilation of the use of the five methods in different 
central banks.

14. The approach currently used by the Central Bank of Chile to estimate the 
output gap is based on the production function.

15. Its simplicity has made it quite valuable for empirical applications related 
to monetary policy (for example, Clarida, Galí, and Gertler, 1998), but its use has 
generated much controversy based on the argument that better modeling of output 
requires stochastic components in the model.
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Table 1. Alternative Methods of Calculating the Output Trend

Method Calculation
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(λ = 1,600) y y y yt

T
t t

T
t
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t
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T BK
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q BK
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q
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+
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+∑ ∑ω ω1 111
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1
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T
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T
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C
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t
C

t= + +− −δ δ1 1 2 2

Source: Authors’ calculations.
a. The numbers 6 and 32 represent the minimum and maximum of the desired oscillation period for quarterly data.
b. The numbers 6 and 32 have the same interpretation as in the Baxter-King filter. The numbers 1 ,0, 0 represent 
the existence of unit roots, without drift and symmetric filter, respectively.

cyclical components. Clark (1987) proposes a model in which he 
assumes that the trend component follows a random walk process 
with drift and the cyclical component follows an AR(2) process. 
The main advantage of this type of model is that it allows a richer 
short-term dynamic specification for the model.

2.2 Results

The output data observed at each point in time were constructed 
using data compiled from the monthly publications (bulletins) of 
the Central Bank of Chile. We constructed an output series for each 
new statistical entry in which a new output record was published, 
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incorporating the revisions of the data published before.16 For the 
quantitative evaluation of uncertainty in the output gap estimates, 
we consider the period between the first quarter of 2000 and the last 
quarter of 2006, although the output gap estimates were calculated 
based on information since 1986.17 Hence, the first time series we 
use covers the period between the first quarter of 1986 and the first 
quarter of 2000. The series that follows contains an additional quarter 
not included in the previous series, and this occurs successively until 
the last series, which comprises the complete period from the first 
quarter of 1986 to the last quarter of 2006. Each output series was 
seasonally adjusted using the X-12-ARIMA procedure employed by the 
Central Bank of Chile. The series thus reflect both the revisions and 
the reestimation of seasonal factors. Finally, the series published in the 
last quarter of 2006 is our final output series, although we are aware 
that this series contains data that will be revised in the future.

The compilation of the information described above produced a 
total of twenty-eight output series for each point in time. We apply 
the five detrending methods to each of these estimates to calculate the 
output gap. Following the methodology applied by Orphanides and 
van Norden (1999), our final estimates are the output gap for the last 
available series and our real-time estimates are the series constructed 
with the last observation of each of the output gaps estimated with 
the twenty-eight series. Figures 1 and 2 illustrate these estimates 
using final and real-time data.

As the figures show, most of the estimations generated by the 
different detrending methods behave similarly in terms of their 
trajectories. This is true for both the estimations using final data and 
those using real-time data. The only exception is the estimation of the 
output gap based on the quadratic trend. Despite the comovements 
observed in the different series, however, the magnitude of the changes 
varies considerably among methods. The different methods also produce 
a wide range of output gap estimates. The average difference between 
the highest and lowest estimates is 6 percent with final data and 12 
percent with real-time data. The order of magnitude of these differences 

16. In some cases, the revisions were observed for one or two quarters back, while 
in others, such as the periods with base changes, the revisions were performed on the 
full series. The Central Bank revised the national accounts and changed the base year 
on two separate occasions during the sample period. The first time was in the fourth 
quarter of 2001, when the base year changed from 1986 to 1996 prices, and the second 
time was in the last quarter of 2006, when the base year changed to 2003. (The vertical 
dotted lines in figures 1 to 3 show these changes.)

17. For a statistical filter to produce reasonable results, we need at least one 
complete cycle in the series, which implies that long time series are necessary. 
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Figure 1. Output Gap Estimates for the Chilean Economy 
with Final Data

Source: Authors’ calculations.

Figure 2. Output Gap Estimates for the Chilean Economy 
with Real-Time Data

Source: Authors’ calculations.

is considerable since they are much greater than the difference between 
the highest and the lowest points of the business cycle within the period 
considered (approximately 5 percent for both types of data and for a 
majority of filters). The average dispersion between methods is also 
important, reaching 2.3 percent with final data and 4.3 percent with 
real-time data. In addition, the estimations using final data tend to be 
clustered between the fourth quarter of 2004 and the third quarter of 
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2005. These estimates remain relatively close toward the end of the 
period of analysis, with the exception of the output gap based on the 
quadratic trend. This latter pattern is not observed with real-time 
estimates. To provide a qualitative idea of the importance of data 
revision, figure 3 shows the difference between the estimates with final 
data and those with real-time data for the five detrending methods. This 
difference represents the total revision in the output gap.

Figure 3. Total Revisions in the Output Gap for the Chilean 
Economy

Source: Authors’ calculations.

The figure reveals that the magnitude of the revisions is also 
important and differs substantially among the filters used, with 
an average dispersion of revisions among different measures of 2.8 
percent. The most extreme cases are observed in early 2004, when 
revisions of the HP, CF, and quadratic trend methods were the most 
important in the entire sample. This is due to the fact that these filters 
do not adequately capture the turning point of the output gap in that 
period (see figures 1 and 2), and it suggests that real-time estimates 
were imprecise. This is not the case for the BK and Clark methods, 
which present practically null revisions at that same point in time. 
Rather, the most important revisions for these last two filters are seen 
at the beginning of the sample. To better understand the differences 
between the estimates with final data and those with real-time data, 
we present descriptive statistics of the output gap estimates and of 
the revisions for the five filters in tables 2 and 3, respectively. Figure 
4 shows the time behavior of all these estimates.
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Figure 4. Estimation of the Output Gap and Total 
Revisions using Final and Real-Time Data for the Five 
Alternative Filters

A. Hodrick- Prescott B. Baxter-King

C. Christiano-Fitzgerald D. Quadratic trend

E. Clark

Source: Authors’ calculations.
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Comparing the results in tables 2 and 3 shows that, on average, 
total revisions are similar to or greater than the output gap estimates 
for all filters used.18 Something similar occurs with the average gap 
in absolute value. This confirms the previous discussion, since the 
revisions are always significant in magnitude regardless of whether 
the economy is in a recession or is expanding. With respect to the 
minimum and maximum points of the cycle, the estimations with 
final and real-time data coincide with the minimum values of the 
gap only in the case of the Clark method (see figure 4, panel E), while 
the estimations coincide with the maximum values for the BK filters, 
the quadratic trend, and the Clark method (see figure 4, panels B, 
D, and E). This suggests that most of the methods fail to identify the 
magnitude of the recessive periods. The last column of table 2 shows 
the correlation coefficients between final data estimates and real-time 
data estimates for each filter. The highest correlations are observed 
for the Clark and the quadratic trend methods (over 0.8), while the 
CF and BK filters produce the lowest correlations. Another important 
element is the degree of persistence of the revisions, since as the 
revisions persist over time, the discrepancies between the final and 
real-time estimates tend to remain or disappear slowly over time. The 
last column of table 3 reports the estimated first-order autocorrelation 
coefficients for total revisions, which indicate that these revisions are 
highly persistent, with the exception of the Clark filter.

We have yet to address the issue of whether the output gap 
measures constructed with real-time data are reliable.19 Since the 
different methods vary substantially with respect to the size of the 
cyclical component, it is more convenient to compare the reliability 
of the real-time estimates using independent scale measures. Table 4 
presents the reliability measures used by Orphanides and van Norden 
(1999). In the first column, we present the correlation between final 
and real-time series for each detrending method. The other three 
indicators in table 4 measure in different ways the relative importance 
of the revisions (the ideal value for these three indicators is zero). The 
N/S indicator is the ratio of the standard deviation of the revision to 
that of the final estimate of the output gap and approximates the 

18. This result is qualitatively similar to that found by Orphanides and van Norden 
(1999) for the U.S. economy.

19. We define reliability in terms of quantifying the difference between the final 
estimates and the real-time estimates. Our measures thus do not indicate anything 
regarding the reliability of each method as a tool for the estimation of the true output 
gap (Bernhardsen and others, 2005).



471Sources of Uncertainty in Conducting Monetary Policy in Chile

noise-to-signal ratio. The OPSING indicator shows the frequency with 
which the real-time estimates of the output gap reveal a different 
sign than the final estimates. Finally, the XSIZE indicator shows the 
frequency with which the absolute value of the revision exceeds the 
absolute value of the final estimates of the output gap. The Clark and 
the quadratic trend methods reveal smaller noise levels and smaller 
frequencies in observations with errors in the sign and with significant 
size in the revision. The CF filter performs the worst under these 
reliability measures.

Table 4. Descriptive Statistics of the Reliability Measures 
for Alternative Different Filtersa

Filter Correlation N/S OPSIGN XSIZE

Hodrick-Prescott 0.611 1.055 0.286 0.500
Baxter-King 0.560 0.902 0.321 0.536
Christiano-Fitzgerald 0.203 1.229 0.393 0.750
Quadratic trend 0.841 0.650 0.071 0.214
Clark 0.988 0.156 0.000 0.036

Source: Authors’ calculations.
a. The first column presents the correlation between the final and real-time series for each detrending method. 
The N/S indicator is the ratio of the standard deviation of the revision to the standard deviation of the final 
estimate of the output gap; it approximates the noise-to-signal ratio. The OPSING indicator shows the frequency 
with which the real-time estimates of the output gap reveal a different sign than the final estimates. The XSIZE 
indicator shows the frequency with which the absolute value of the revision exceeds the absolute value of the 
final estimates of the output gap. 

 
In sum, the above results show that, in general, revisions of 

the output gap seem to be important and persistent for the period 
considered and that the correlations between the final and real-time 
estimates of the output gap are relatively low. Nonetheless, the 
Clark method provides the most favorable statistics. The analysis 
also reveals that the Clark method is the most reliable with real-
time data.20 Comparing our results with those of Orphanides and 
van Norden (1999) for the U.S. economy, we find that the different 
reliability measures generally produce similar values. These results 

20. As a robustness test, we also calculated the reliability measures in real time 
using output gap estimations with unadjusted and seasonally adjusted data through 
the seasonal dummy variables. Our conclusions do not change (for details, see appendix 
A). This exercise was done to verify whether the reestimation of the seasonal factors, 
which is not present in the unadjusted data and is constant when we use seasonal 
dummy variables, substantially influences our results.
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imply that caution should be used when assessing the level of the real-
time estimates of the output gap, at least with the methodologies used 
here. Additionally, our results should be considered a lower bound for 
measurement errors that could be present in the output gap estimates, 
because comparisons are made with respect to a measure of the final 
output gap that could contain unrevised data.

3. addiTive and MUlTipliCaTive UnCerTainTy

To focus on the empirical importance of additive and multiplicative 
uncertainty, we use data for the 1990 to 2006 period but with emphasis 
on the 1999–2006 subsample, the full-fledged inflation-targeting 
period. We adopt a slightly modified version of the forward-looking 
specification of Svensson (2000) and Al-Eyd and Karasulu (2008) to 
estimate the behavioral equations of a small open economy, as is the 
case of Chile (namely, aggregate demand, the Phillips curve, and the 
real uncovered interest parity condition). As in Zhang and Semmler 
(2005), we do not include a monetary policy rule in this specification, 
given that the paper’s objective is to analyze the primary sources of 
uncertainty faced by the Central Bank, which is associated with the 
structure and behavior of the economy.21 To capture the sources of 
uncertainty, we estimate the model with time-varying parameters, 
assuming that shocks have state-dependent variances (two states) 
and that their behavior follows a first-order Markov process. This 
strategy allows us to decompose the conditional variance of the 
forecast error into two components: one associated with the parameters 
(multiplicative uncertainty) and one with the shocks in the model 
(additive uncertainty).

3.1 Methodological Issues

The existing literature on additive and multiplicative uncertainty 
typically uses models that explicitly consider the stochastic volatility 
potentially present in the errors (heteroskedasticity) and time-varying 
parameters (Zhang and Semmler, 2005). The papers that explicitly 
address parameter uncertainty include Cogley and Sargent (2002), 
who study the inflation dynamics of the United States in the postwar 
period using a Bayesian VAR with time-varying parameters. Another 

21. Moreover, the optimal monetary policy feedback parameters will depend on 
the structure and behavior of the economy.
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example is Semmler, Greiner, and Zhang (2005), who estimate the 
Phillips curve and a monetary policy Taylor rule for the euro area, 
also with time-varying parameters. Both works find substantial 
changes in the model parameters. However, even though the evidence 
encountered when using models with time-varying parameters points 
to the existence of important degrees of uncertainty, this analysis 
cannot be separated from additive uncertainty in the modeling 
process. When additive uncertainty is not considered, volatility in the 
parameters could be exaggerated when it is indeed captured (Sims, 
2002). Sims and Zha (2006), who study regime changes in the dynamics 
of the U.S. economy, find evidence in favor of stable model dynamics 
but unstable variance of the disturbances. In response, Cogley and 
Sargent (2005) modify their original model considering time-varying 
parameters and stochastic volatility; they also find the existence of 
regime changes. More recent examples of the estimation of Taylor 
rules with time-varying parameters and stochastic volatility can be 
found in Kim and Nelson (2006) and Zampolli (2006). 

To incorporate both additive and multiplicative uncertainty, we 
follow the approach used by Zhang and Semmler (2005). We use a 
model with time-varying parameters and shocks characterized by 
state-dependent variance. In contrast to Cogley and Sargent (2005), 
who assume that the variance of the shocks changes each period, we 
assume that the variance has only two states (high and low) and follows 
a Markov process, as in Sims and Zha (2006).22 This specification, 
besides having the advantage of dealing with both types of uncertainty 
in the same model, allows the decomposition of the variance of the 
forecast error into two components: one associated with additive 
uncertainty and one with multiplicative uncertainty (Kim, 1993).

The specification we use for the behavioral equations of the economy 
is a slightly modified version of the specification of Svensson (2000) and 
Al-Eyd and Karasulu (2008); it is a neo-Keynesian version for a small 
open economy comprising the IS curve (aggregate demand), the short-
run supply curve (Phillip’s curve), and the real uncovered interest 
parity condition (UIP). We diverge from these authors however, in 
allowing deviations of the UIP because of imperfections in the capital 
markets, capital controls, speculative bubbles, and so forth. As is 
usual in the modern dynamic stochastic general equilibrium (DSGE) 
literature, the deviations in the UIP are modeled by introducing a 

22. These authors assume that the variance of the regression errors follows a 
Markov process with three states.
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backward-looking component in the original specification of Svensson 
(2000) and Al-Eyd and Karasulu (2008). The behavioral equations of 
the economy can thus be written as

yt = θ1,t yt–1 + θ2,t Et[yt+1] + θ3,t rt–1+ θ4,t qt–1+ εt
d , (5)

πt = φ1,t πt–1 + φ2,t Et[πt+1] + φ3,t yt–1+ φ4,t qt + εt
s , (6)

and

qt = γ1,t Et[qt+1] + γ2,t (rt – rt
f ) + γ3,t qt–1 + υt , (7)

where yt represents the real output gap, πt is the inflation rate, rt is 
the short-term real interest rate, qt is the real exchange rate, and 
rt

f is the foreign real interest rate, observed in period t. The terms 
Et[yt+1], Et[πt+1] and Et[qt+1] represent the expectations for period t 
+ 1 of the output gap, the inflation rate, and the real exchange rate, 
respectively, conditional on the information available at period t (Et 
is the expectations operator). The terms εt

d, εt
s and υt are shocks with 

state-dependent variances. The first two are aggregate demand and 
supply shocks, respectively, and the third is associated with the 
exchange market. As described by Al-Eyd and Karasulu (2008), this 
last disturbance term could be interpreted as a risk premium that 
captures the effects of unobservables, such as the exchange market 
sentiments. Finally, θi,t (with i = 1, 2, 3, 4), φi,t (with i = 1, 2, 3, 4), and 
γi,t (with i = 1, 2, 3) are the time-varying parameters.

Two interesting observations can be made about this specification. 
First, the explicit inclusion of the exchange rate in the modeling 
process is relevant for an economy such as Chile, whose Central Bank 
uses inflation targeting as a monetary policy framework. Relative to 
the closed economy models, the specification introduces an important 
additional transmission channel of monetary policy and incorporates 
the external shock effect on the domestic economy. Second, the 
specification incorporates both forward-looking and backward-looking 
terms (hybrid model), for which there is empirical backing at least 
in the case of the Phillips curve (Caputo, Liendo, and Medina, 2006, 
and Céspedes, Ochoa, and Soto, 2005). Forward-looking terms can be 
justified by appealing to sticky price models of the Calvo (1983) type, 
whose wage-setting (or price-setting) mechanism is built in for a share 
of Chilean labor contracts. 
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The inclusion of forward-looking components, however, introduces 
the problem of how the components are measured or approximated, a 
choice that can have important implications for estimation properties 
(namely, consistency). The literature proposes various ways to deal 
with these variables and the most appropriate estimation techniques 
in each case. An obvious option is to use ex post data, that is, to 
approximate the expectation variables with their respective observed 
future values. While this option is operationally simple, it generates 
an endogeneity bias in the estimation of the model parameters, which 
leads to inconsistent estimates (Kim and Nelson, 2006).23

Galí and Gertler (1999), Roberts (2001), and Galí, Gertler, and 
López-Salido (2005) propose a methodology to address the endogeneity 
problem using ex post data for the forward-looking component of 
the model and instrumentalizing expectations through generalized 
method of moments (GMM) estimation. The use of GMM techniques 
to estimate the Phillips curve and the forward-looking Taylor rules is 
very common in the literature.24 Along these lines, Kim (2004, 2006) 
proposes the application of instrumental variables for the estimation 
with endogenous regressors, using time-varying parameter models and 
regime changes. This methodological proposal solves the endogeneity 
problem by applying the Kalman filter in a two-stage Heckman (1976) 
estimation.25 The specification of the behavioral equations in equations 
(5) to (7) can be rewritten in a state-space form under Kim’s (2004, 
2006) methodology as follows:

xt = wt’β1,t + vt’β2,t + εt, εt ~ N (0, σε,St

2 );

βt = βt-1 + ηt,  ηt ~ N (0, Qη); 

vt = Zt’δt + ξt,  ξt ~ N (0, Qξ); (8)

δt = δt-1 + κt,  κt ~ N (0, Qκ);

σ σ σ σ σ σε ε ε ε ε ε, , , , , , ;S tt
S2

0
2

1
2

0
2

1
2

0
2= + −( ) >,       

23. This is relevant because one of our objectives is precisely to study parameter 
uncertainty. Another straight-forward option is to use data from expectation surveys 
to construct a proxy variable of expectations (Roberts, 1995). This alternative has two 
potential problems: the first is associated with the availability of long time series for 
the estimation; the second is survey measurement error.

24. Several papers apply this methodology to Chile, including Céspedes, Ochoa, and 
Soto (2005), who estimates a hybrid Phillips curve, and Corbo (2002), who estimates a 
reaction function for the Central Bank.

25. Kim and Nelson (2006) use this methodology to estimate a forward-looking 
Taylor rule with ex post data for the United States. 
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where xt represents a vector of state variables (yt, πt, and qt for 
aggregate demand, the Phillip’s curve, and the UIP, respectively), wt 
is the vector of explanatory variables that are assumed to be exogenous 
or predetermined (yt–1, rt–1, and qt–1 for aggregate demand, πt–1, yt–1, 
and qt for the Phillip’s curve, and rt – rt

f and qt–1 for the UIP), vt is 
a vector of endogenous explanatory variables, which are correlated 
with the model errors εt (yt+1, πt+1, and qt+1, respectively), Zt is a vector 
of instrumental variables, βt = (β1,t, β2,t)′ and δt are vectors of time-
varying parameters, ηt, ξt, and κt are Gaussian errors with a matrix 
of variances Qi (with i = η, ξ, κ), and St is an unobservable indicator 
variable that is equal to one in the high-volatility state and zero 
otherwise. We assume that the variance of errors εt present two states 
with transition probabilities that follow a Markov process and that are 
expressed as Pr[St = 1  St–1 = 1]= p and Pr[St = 0  St–1 = 0]= q.

Kim (2006) proposes specifying the endogeneity in the model 
assuming that the correlation between the error term, εt, and 
the standardized forecast error associated with the endogenous 
variables, ξt

* (that is, the prediction error associated with the rational 
expectations of the agents), is constant and equal to ρ. On the other 
hand, in an earlier work that considers state-dependent variance of 
the errors, Kim (2004) suggests that this correlation will also be state 
dependent. The model error can thus be rewritten as 

ε ξ ρ σ ρ ρ σ ωε εt t S S S S S tt t t t t
= + −*

, ,' ' ,1

with ωt ~ N(0, 1). Using this last expression we can write the first 
equation of model (8) as

xt t t t t t S S S S S tt t t t t
= ′ + ′ + ′ + − ′w vβ β1 2 1, ,

*
, , ,ξ ρ σ ρ ρ σ ωε ε  (9)

with ωt ~ N(0, 1), where ρSt = ρ0 + ( ρ1 – ρ0)St and St is the same indicator 
variable defined above. In this last equation, the model error is 
independent of vt and ξt

*. Hence, the estimation generates parameters 
that are consistent. For the estimation, Kim (2004, 2006) proposes the 
following two-stage procedure. The first stage consists in estimating 
a model that instrumentalizes the endogenous variables using the 
maximum log-likelihood method based on the error forecast and the 
conventional Kalman filter. That is,
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vt = Zt’δt + ξt,  ξt ~ N (0, Qξ);
  (10)
δt = δt-1 + κt,  κt ~ N (0, Qκ).

The standardized forecast error of vt is then calculated as 

ξ ξt t t t t t t
*

, |
/

| ,= − ′





−

−
−Q v Z1

1 2
1δ

for all t = 1, 2,…, T. The second stage consists in using the calculated 
forecast error to estimate the following model using maximum 
log-likelihood techniques that combine the Kalman filter and the 
expectation-maximization (EM) algorithm proposed by Hamilton 
(1989, 1990):26

xt t t t t t S S S S S t tt t t t t
= ′ + ′ + ′ + − ′ (w vβ β1 2 1 0 1, ,

*
, , ~ ,ξ ρ σ ρ ρ σ ω ωε ε ,  N ));

βt = βt-1 + ηt, ηt ~ N (0, Qη 
); 

(11)
σ σ σ σ σ σε ε ε ε ε ε, , , , , , ;S tt

S2
0

2
1

2
0

2
1

2
0

2= + −( ) >,

ρ ρ ρ ρS tt
S= + −( )0 1 0 .

Finally, Kim (1993) suggests a procedure, using specification 
(8), to decompose the conditional variance of the forecast error (f) 
into two components: f1, the conditional variance resulting from 
changes (lack of knowledge) in the model parameters (that is, 
multiplicative uncertainty) and f2, the conditional variance given 
the heteroskedasticity in the error term (additive uncertainty).27 

26. The estimation algorithm is presented in appendixes B, C, and D. A potential 
limitation of this methodology for estimating the behavioral equations of the economy 
is that Kim (2004, 2006) assumes that the shocks associated with each equation are 
independent of each other, and he thus does not take advantage of the information 
contained in the possible correlations (that is, common states). In other words, the 
methodology permits the estimation of each equation separately, so the different states 
of the shocks will not necessarily coincide for the three equations. Zhang and Semmler 
(2005) find very different occurrence probabilities for each state of the shocks depending 
on whether they are dealing with aggregate demand or the Phillips curve, indicating 
that the states in the model do not coincide in the same time period.

27. In this paper, Kim (1993) identifies the sources of uncertainty and their 
importance associated with the process of monetary creation in the United States.
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In this procedure, Kim exploits the informational structure of the 
model related to the probability distributions in the different states. 
The conditional variance stemming from multiplicative uncertainty 
depends on the state in a previous period, while the conditional 
variance from additive uncertainty depends on the state in the 
current period. This decomposition is quite useful since it gives us the 
percentage of the total variance of the forecast error that is caused by 
each source of uncertainty. Formally,28

f f f
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where 

β βt t t t t t
i

i

S i| |Pr |− − −
=

= = ∑1 1 1
0

1

ψ

and where Pt t
i
|−1 is the variance-covariance matrix of βt t

i
|−1 in state i. 

 
3.2 Results

To estimate equation (8), we use quarterly data for the period 
beginning in the first quarter of 1990 and ending in the last quarter 
of 2006. The output gap, yt, is the difference between the observed 
GDP and its trend, calculated using the HP filter. We use the HP filter 
because it is one of the most commonly used filters in the literature 
and it thus allows us to compare our results with those of other papers 
that estimate behavioral equations for Chile. Although the Clark 

28. For details on the formal derivation of the decomposition of the conditional 
variance of the forecast error, see Kim and Nelson (1999).
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filter behaves best with real-time data, according to the results in the 
previous section, this does not imply that it is the best filter to estimate 
the “true” output trend. Additionally, our measure of the output gap 
is “final” output, based on an output series that ends in 2006. Thus, 
the uncertainty associated with data revisions is not included in the 
types of uncertainty analyzed in this section.29 The quarterly inflation 
rate, πt, is measured as the quarterly variation of the underlying 
consumer price index excluding regulated prices and prices of fuel and 
of some perishable goods such as fruits and vegetables (CPIX). As in 
Céspedes, Ochoa, and Soto (2005), we use the CPI variation instead of 
the implicit deflator variation of the GDP since the latter is measured 
with considerable noise in the case of Chile and is strongly influenced 
by variations in the terms of trade. Also, the Central Bank’s inflation 
target is expressed in terms of CPI variation. In the case of the real 
exchange rate, qt, we chose the bilateral exchange rate index with the 
United States. Finally, the foreign and domestic short-term interest 
rates, rt and rt

f, are defined as the monetary policy rates of Chile and 
the United States, respectively. All the previous data were obtained 
from the Central Bank’s database. Table 5 shows the parameters 
estimated using Heckman’s two-stage procedure detailed in Kim (2004, 
2006).30 The parameters presented in this table are not structural 
parameters of the model.

We would like to highlight two interesting results. The first is 
that variances of shocks confirm that there are two states in the three 
behavioral equations: a high-volatility state and a low-volatility state. 
For the aggregate demand estimations, the variance of shocks in the 
high-volatility state is substantially greater than in the low-volatility 
state (0.48 versus 0.05). The difference between these variances for 
the Phillips curve is just as large (0.54 and 0.03 in the high and low-
volatility states, respectively). We obtain similar results in the case of 
the UIP (3.75 versus 2.45), although the magnitude of the difference 
is not as large as in the previous two cases. All the variances are 
statistically significant, with the exception of the variance associated 
with the high-volatility state of the Phillips curve. Finally, while the 
variances of shocks for the UIP do not differ significantly, the size of 
the variances is considerable compared with those found for aggregate 

29. The way detrending is done may affect the estimations, so we run a robustness 
analysis below.

30. In applying the Kalman filter in the evaluation of the likelihood function, we 
eliminated twelve observations at the beginning of the sample owing to the presence 
of nonstationary time series in the model; see Kim and Nelson (1999).
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demand and the Phillips curve. The second interesting result is the 
existing correlation between the shocks of the behavioral equations 
and the errors in the economic agents’ expectations, which also vary 
substantially with the states. In particular, the results suggest that 
agents tend to commit crucial errors in their forecasts in high-volatility 
states of the shocks. This fact is particularly true for the Phillips curve, 
where such correlation varies between 0.001 and 0.470 for both states, 
and for the real uncovered interest parity condition (0.49 versus 1.00). 
In the case of aggregate demand, there is also an important correlation 
in the high-volatility state. Nonetheless, the difference between the 
correlations of the two states is less evident than in the previous two 
cases. Also, the correlation coefficients are highly significant for all 
cases except the one associated with the low-volatility state of the 
shocks in the Phillips curve.

Figures 5 to 7 show the behavior over time of the structural 
parameters of the equations estimated in table 5. There are two 
series in each figure, which correspond to the relevant values of 
the parameters in each possible state of shocks in the model (that 
is, high volatility and low volatility). In the case of the aggregate 
demand parameters (figure 5), there are two clearly defined periods. 
The first period, which ends in 1999, is marked by high instability 
and substantial differences between the parameters of the two states 
associated with the demand shocks. During this period, the average 
probability that the economy was in a high-volatility state was 0.82, 
and the macroeconomic context was characterized by a substantial 
range of variation in the annual GDP growth rate (from 15 percent 
to below 6 percent) and by high inflation rates. The second period 
(from 1999 onward) saw a significant reduction in instability, as well 
as in the differences of the parameters with respect to the state of 
the shocks, with the exception of the parameter associated with the 
output gap’s degree of persistence. The average probability that the 
economy was in a high-volatility state was only 0.10. These results 
suggest that the multiplicative uncertainty associated with aggregate 
demand tends to decline over time. Also, the output gap’s degree of 
persistence (θ1,t) and its response to changes in relative prices (θ4,t) 
have declined over time, while the contrary has occurred with the 
degree of response to expectations (θ2,t) and the monetary policy 
interest rate (θ3,t). This is consistent with the logic of the inflation-
targeting framework.31

31. In 1999, the full-fledged inflation-targeting framework was established.



482 Felipe Morandé and Mauricio Tejada

Figure 5. Time-Varying Parameters Estimated for the 
Aggregate Demand

A. Lagged
output-gap parameter

B. Lead
output-gap parameter

θ01,t

θ02,t
θ12,t

θ11,t

C. Lagged real interest
rate parameter 

D. Lagged real exchange
rate parameter

θ03,t
θ13,t

θ04,t
θ14,t

Source: Authors’ calculations.

The parameters of the Phillips curve show a significant dependence 
on the state of the supply shocks (see figure 6). In periods of high 
volatility, the parameters tend to show high instability, while they 
are much more stable in periods of low volatility. Unlike the results of 
the aggregate demand parameters, this dependence was maintained 
throughout the entire period. The state of shocks is thus key to 
explaining greater or lower degrees of uncertainty in the Phillips curve 
parameters. A high-volatility state of shocks prevailed throughout 
most of the 1990s (with an average probability of 0.9), so the relevant 
parameters in that period were those of the high-volatility state. In 
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the most recent period (1999 onward), the average probability was 
only 0.06. Figure 6 also reveals that when the economy experiences a 
relatively calm period with respect to the supply shocks, persistence 
of the inflation rate (φ1,t) and the importance of expectations in the 
determination of the inflation rate (φ2,t) are greater. This happens 
toward the end of the period of analysis. The trend is lower in the 
case of the response of inflation to the business cycle (φ3,t) and to 
variations in the real exchange rate (φ4,t). When the supply shocks 
are highly volatile, however, there is no definite trend for the Phillips 
curve parameters. 

Figure 6. Time-Varying Parameters Estimated for the 
Phillips Curve

A. Lagged
inflation parameter

B. Lead
inflation parameter

φ0

1,t

φ1

1,t

φ0

2,t

φ1

2,t

C. Lagged
output-gap parameter

D. Real exchange
rate parameter

φ0

3,t

φ1

3,t

φ0

4,t

φ1

4,t

Source: Authors’ calculations.
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Finally, parameters associated with the UIP show substantial 
differences depending on the state of shocks (see figure 7). There is 
no defined trend in any of the cases. Moreover, in the entire period 
of analysis, the UIP parameters are more stable in the low-volatility 
state than in the high-volatility state. In this latter state there are two 
defined periods: one covering the decade of the 1990s, during which the 
parameters showed greater stability, and another from 2000 onward, 
in which the parameters increased their variability and magnitude 
substantially, in comparison with the first period. This change could be 
explained by the adoption of a completely flexible exchange rate scheme 
in 1999. Also, the estimations suggest that the economy was experiencing 
a high-volatility state of shocks in the entire period, since the occurrence 
probability of this state did not fall below 0.7 at any time. 

Figure 7. Time-Varying Parameters Estimated for the Real 
Uncovered Interest Parity 

A. Lead real
exchange rate parameter 

B. Real interest
rate differential parameter 

γ0

1,t

γ1

1,t

γ0

2,t

γ1

2,t

C. Lagged real exchange rate parameter

γ0

3,t

γ1

3,t

Source: Authors’ calculations.
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Based on the estimated parameters presented in table 5, we 
calculated the decomposition of the conditional variance of the forecast 
error. Figure 8 shows the decomposition for the set of equations 
associated with aggregate demand. Total uncertainty in the output 
gap (aggregate demand) equation has been relatively high throughout 
the entire period (with the output gap measured as the percentage 
deviation of output with respect to its trend). The forecast error 
variance was 0.021, on average, of which 87.6 percent was explained 
by uncertainty in the demand shocks and 12.4 percent by instabilities 
in the model parameters (see table 6). Total uncertainty registered 
significant spikes (almost twice the average) in the mid-1990s and in 
1998–99. After 2000, however, total uncertainty declined by a little 
over 30 percent relative to the average observed between 1993 and 
1999. We obtained similar results with the contributions of additive 
and multiplicative uncertainty to total uncertainty. While parameter 
instability contributed approximately 15 percent to total uncertainty 
throughout the 1990s, this contribution decreased to less than 10 
percent in the period after 2000.

Figure 8. Decomposition of the Conditional Variance of the 
Forecast Error of the Output Gap

Source: Authors’ calculations.

The decomposition of the conditional variance of the forecast 
error for the inflation rate equation (that is, the Phillips curve) 
is shown in figure 9. Results in this case are similar to those 
found for the output gap with respect to magnitude and behavior 



T
ab

le
 6

. D
ec

om
p

os
it

io
n

 o
f 

th
e 

C
on

d
it

io
n

al
 V

ar
ia

n
ce

 o
f 

th
e 

F
or

ec
as

t 
E

rr
or

 o
f 

th
e 

O
u

tp
u

t 
G

ap

C
on

di
ti

on
al

 v
ar

ia
nc

e 
of

 t
he

 f
or

ec
as

t 
er

ro
r

P
er

ce
nt

ag
e

P
er

io
d

T
im

e-
va

ry
in

g 
pa

ra
m

et
er

s
M

ar
ko

v
T

ot
al

T
im

e-
va

ry
in

g 
pa

ra
m

et
er

s
M

ar
ko

v

19
93

–9
9

0.
00

40
7

0.
02

17
3

0.
02

58
0

15
.7

84
.3

20
00

–0
6

0.
00

16
0

0.
01

53
5

0.
01

69
6

9.
3

90
.7

T
ot

al
 s

am
pl

e
0.

00
27

9
0.

01
84

2
0.

02
12

1
12

.4
87

.6

S
ou

rc
e:

 A
u

th
or

s’
 c

al
cu

la
ti

on
s.

T
ab

le
 7

. D
ec

om
p

os
it

io
n

 o
f 

th
e 

C
on

d
it

io
n

al
 V

ar
ia

n
ce

 o
f 

th
e 

F
or

ec
as

t 
E

rr
or

 o
f 

th
e 

In
fl

at
io

n
 R

at
e

C
on

di
ti

on
al

 v
ar

ia
nc

e 
of

 t
he

 f
or

ec
as

t 
er

ro
r

P
er

ce
nt

ag
e

P
er

io
d

T
im

e-
va

ry
in

g 
pa

ra
m

et
er

s
M

ar
ko

v
T

ot
al

T
im

e-
va

ry
in

g 
pa

ra
m

et
er

s
M

ar
ko

v

19
93

–9
9

0.
00

85
2

0.
01

23
5

0.
02

08
7

37
.5

62
.5

20
00

–0
6

0.
00

26
0

0.
00

81
8

0.
01

07
8

23
.2

76
.8

T
ot

al
 s

am
pl

e
0.

00
54

5
0.

01
01

9
0.

01
56

3
30

.1
69

.9

S
ou

rc
e:

 A
u

th
or

s’
 c

al
cu

la
ti

on
s.



487Sources of Uncertainty in Conducting Monetary Policy in Chile

(principally for the decade of the 90s). Total uncertainty associated 
with the inflation rate was 0.015, on average, for the entire period, 
of which 69.9 percent is explained by uncertainty in the supply 
shocks and 30.1 percent by parameter instability (see table 7). As 
in the case of the output gap, the two recurrent periods of high 
uncertainty are in the mid-1990s and 1998–99, when uncertainty 
reached levels more than twice the observed average for the entire 
period. Although additive uncertainty explains the largest share of 
total uncertainty for the whole period, the contribution pattern is 
briefly reverted during Asian crisis, when parameter uncertainty 
is most relevant. Total inflation uncertainty decreased over time, 
as in the case of the output gap, while the contribution of additive 
uncertainty increased with time.

Figure 9. Decomposition of the Conditional Variance of the 
Forecast Error of the Inflation Rate

Source: Authors’ calculations.

Finally, figure 10 presents the decomposition of the conditional 
variance of the forecast error associated with the real exchange rate 
equation. Total uncertainty, measured by the variance, was quite 
important throughout the period (approximately 4.1, on average) and 
is basically explained (92 percent) by uncertainty in the UIP shocks 
or uncertainty in the risk premium that captures the effects of the 
unobservables of the exchange market sentiments. Total uncertainty 
does not follow a defined pattern over time (see table 8). 
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Figure 10. Decomposition of the Conditional Variance of the 
Forecast Error of the Real Exchange Rate

Source: Authors’ calculations.

In sum, overall uncertainty is dominated by additive uncertainty 
in all three sets of equations (namely, the output gap, inflation, 
and the real exchange rate). Moreover, the results of estimating 
the behavioral equations (aggregate demand and aggregate supply) 
suggest that the variance of shocks is state dependent and that 
such states could be considered as high-volatility periods and low-
volatility periods in the shocks. For these two sets of equations, 
total uncertainty has consistently declined in the current decade, 
resulting in a rather long period of stability (so far) that coincides 
with the establishment of a full-fledged inflation-targeting 
framework for the conduct of the Chilean monetary policy and 
an explicit rule for setting fiscal policy. In the 1990s, in contrast, 
total uncertainty increased substantially in the output gap and 
the inflation rate, with a clear division into the two states in the 
variance of shocks. This also indicates that during these periods 
the Chilean economy experienced a high-volatility state of shocks. 
Finally, uncertainty in the real exchange rate is basically explained 
by the exchange market shocks, and it has not decreased over time 
like inflation and the output gap.

We use bootstrapping to verify whether the differences between 
the variance of the forecast error due to additive uncertainty and 
that due to multiplicative uncertainty are statistically significant 
and whether the assumption of Gaussian errors in the estimation 
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introduces significant biases.32 The most important findings of this 
exercise can be summarized as follows (for details on the results see 
appendix E): first, while the average bootstrap estimates differ from 
estimates based on the assumption of Gaussian errors, the bias does 
not seem to be important in magnitude; and second, the bootstrap 
estimations confirm the observed trends in total uncertainty (figures 
8 to 10), as well as the statistical significance of the differences in the 
decomposition of the variance.

To conclude this subsection, we present a robustness analysis 
for the decomposition of the forecast error variance. In section 2, we 
found evidence of important differences in the estimation of the output 
gap when we tested five output detrending methods. Given that the 
aggregate demand and the Phillips curve equations contemplate an 
output gap measure for their estimation, measurement errors in the 
estimation of this variable will be part of the additive and multiplicative 
uncertainty without any possibility of discrimination.33 Tables 9 and 
10 show the results of the decomposition of uncertainty into its two 
sources, additive and multiplicative, for these two equations and for 
each of the five filters used in section 2. The first row of both tables 
shows the decomposition presented in the analysis of this subsection, 
where the gap was calculated using the HP filter; this represents our 
benchmark. In the case of the output gap (table 9), total uncertainty 
is generally quite similar for all filters, and differences arise in the 
contribution of each type of uncertainty to total uncertainty, as 
expected. However, all the detrending methods maintain additive 
uncertainty as the most important source of uncertainty (with a 
contribution ranging from a minimum of 84.7 percent with the BK 
filter and a maximum of 90.0 percent with the Clark filter). With 
respect to the inflation rate (table 10), the difference among filters 
can be observed in both the estimation of total uncertainty and the 
contributions of each type of uncertainty to the total. In the former 

32. Our bootstrap resampling followed the methodologies of Stoffer and Wall 
(1991) and Psaradakis (1998) for state-space models using the Kalman filter and for 
the sampling of errors with Markov regime changes, respectively.

33. When the measurement error is associated with the dependent variable, as 
in the case of aggregate demand, the estimated parameters will still be unbiased and 
consistent. The measurement error will be captured by the regression error. When the 
measurement error is associated with one or more independent variables, as is the case 
with the Phillips curve, the parameters will be biased and inconsistent. Although the 
measurement error has different effects depending on the type of variable on which it 
operates, this could have implications for the decomposition of uncertainty (through 
the error or the magnitude of the parameters). 
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case, the estimations are in the range of 0.01374 and 0.02274 with the 
BK filter and the quadratic trend, respectively, while the contribution 
of additive uncertainty varies from 66.6 percent with the BK filter to 
73.5 percent with the Clark filter. In this case, additive uncertainty 
again explains total uncertainty of inflation, regardless of the method 
used to estimate the output gap. These results strengthen our earlier 
conclusions regarding the importance of additive uncertainty for the 
Chilean economy. 

4. final reMarks

Current macroeconomic policy in Chile is world-class. The Central 
Bank of Chile has been operating within a full-fledged inflation-
targeting framework since 1999–2000, while fiscal policy has been 
bounded by an explicit budget rule since 2001 that eliminates 
procyclical influences. As a result, inflation has remained within 
the target range most of the time, and economic activity has grown 
steadily between 2 and 6 percent annually (with no recessions or 
booms whatsoever). This stable period appears in our findings in the 
sense that overall uncertainty concerning monetary policy declined 
in the first seven years of the current decade. Moreover, uncertainty 
attributed to shocks has played a greater role, while uncertainty linked 
to unstable parameters has diminished, in the case of both inflation 
and the output gap, as could be expected. However, the prominence 
of additive uncertainty characterizes the entire period, including 
both the tranquil current decade and the more volatile 1990s. This 
means that investigating the (stochastic) nature of shocks affecting 
the Chilean economy should be high on the research agenda of the 
Central Bank.

The full-fledged inflation-targeting scheme applied since 1999 
incorporated a floating exchange rate and no explicit or implicit target 
for the exchange rate (as was loosely the case during most of the 1990s). 
This important policy innovation has left the exchange rate as the 
main adjustment variable—a sort of fuse. This feature shows in our 
results: parameters in the exchange rate equation are less stable in 
the current decade than they were in the 1990s. 

Our findings assume that there is no model uncertainty, so the 
only uncertainties relevant for the conduct of monetary policy are 
those in the shocks and parameters. Our results must therefore be 
interpreted with caution. To analyze uncertainty in the model, we 
could estimate the behavioral equations of the economy using the 
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methodology presented in this paper but different specifications. 
This approach could be used to verify whether the decomposition of 
the uncertainty found here holds.34 We leave this exercise pending 
for future research. 

Finally, results on uncertainty about the quality and completeness 
of output gap data indicate that using the Hodrick-Prescott filter 
based on real-time data could be misleading. The Central Bank of 
Chile should thus consider a wide spectrum of filters for detrending 
real activity data.35 More importantly, an ample menu of proxy 
variables should be employed to check the economy’s temperature 
when making monetary policy decisions. The literature suggests that 
monetary policy rules that consider, for example, output growth rates 
or unemployment level rates (as opposed to the output gap) are more 
“immune” to this type of uncertainty.

34. This exercise was done only with the UIP under two specifications: the original 
equation of Svensson (2000) and Al-Eyd and Karasulu (2008) and the equation that 
includes the backward-looking term to allow deviations from the parity (presented here). 
We found that although the behavior of the parameters and the magnitude of total 
uncertainty change significantly, the decomposition of the uncertainty is not altered 
(additive uncertainty is maintained as the principal factor of uncertainty).

35. It should also use some alternative methodologies for estimating potential 
output, as it currently does. 
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aPPendix a
Robustness Test for the Reliability of Real-Time Estimates 
using Seasonally Unadjusted Data and Seasonal Dummies

The tables presented in this appendix provide additional details 
on the results obtained in the estimation of the output gap with real-
time data using seasonally unadjusted data and seasonally adjusted 
data through seasonal dummy variables. 

Table A1. Descriptive Statistics of the Total Revisions in the 
Output Gap Using Seasonally Unadjusted Data

Filter Mean
Standard 
deviation Minimum Maximum AR(1)

Hodrick-Prescott –0.005 0.015 –0.036 0.031 0.331
Baxter-King 0.006 0.007 –0.008 0.023 0.722
Christiano-Fitzgerald –0.013 0.009 –0.029 0.005 0.836
Quadratic trend –0.011 0.021 –0.050 0.033 0.676
Clark 0.001 0.006 –0.014 0.010 0.023

Source: Authors’ calculations.

Table A2. Descriptive Statistics of the Reliability Measures 
for the Alternative Distinct Filters Using Seasonally 
Unadjusted Dataa

Filter Correlation N/S OPSIGN XSIZE

Hodrick-Prescott 0.773 0.754 0.286 0.536
Baxter-King 0.529 0.958 0.286 0.464
Christiano-Fitzgerald 0.244 1.290 0.393 0.821
Quadratic trend 0.846 0.642 0.179 0.393
Clark 0.963 0.290 0.036 0.107

Source: Authors’ calculations.
a. The first column presents the correlation between the final and real-time series for each detrending method. 
The N/S indicator is the ratio of the standard deviation of the revision to the standard deviation of the final 
estimate of the output gap; it approximates the noise-to-signal ratio. The OPSING indicator shows the frequency 
with which the real-time estimates of the output gap reveal a different sign than the final estimates. The XSIZE 
indicator shows the frequency with which the absolute value of the revision exceeds the absolute value of the 
final estimates of the output gap. 



T
ab

le
 A

3.
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
of

 t
h

e 
T

ot
al

 R
ev

is
io

n
s 

in
 t

h
e 

O
u

tp
u

t 
G

ap
 U

si
n

g 
S

ea
so

n
al

 
D

u
m

m
ie

s

F
il

te
r

M
ea

n
S

ta
nd

ar
d 

de
vi

at
io

n
M

in
im

um
M

ax
im

um
A

R
(1

)

H
od

ri
ck

-P
re

sc
ot

t
0.

00
2

0.
01

7
–0

.0
34

0.
03

1
0.

26
0

B
ax

te
r-

K
in

g
0.

00
8

0.
00

7
–0

.0
02

0.
01

9
0.

87
4

C
h

ri
st

ia
n

o-
F

it
zg

er
al

d
–0

.0
11

0.
01

0
–0

.0
29

0.
00

2
0.

94
2

Q
u

ad
ra

ti
c 

tr
en

d
–0

.0
04

0.
02

4
–0

.0
51

0.
04

6
0.

52
1

C
la

rk
0.

00
5

0.
00

7
–0

.0
13

0.
01

7
–0

.0
63

S
ou

rc
e:

 A
u

th
or

s’
 c

al
cu

la
ti

on
s.



Table A4. Descriptive Statistics of the Reliability Measures 
for the Alternative Filters Using Seasonal Dummiesa

Filter Correlation N/S OPSIGN XSIZE

Hodrick-Prescott 0.413 1.044 0.321 0.429
Baxter-King 0.646 0.772 0.321 0.500
Christiano-Fitzgerald 0.312 1.031 0.357 0.571
Quadratic trend 0.745 0.771 0.179 0.321
Clark 0.932 0.367 0.071 0.214

Source: Authors’ calculations.
a. The first column presents the correlation between the final and real-time series for each detrending method. 
The N/S indicator is the ratio of the standard deviation of the revision to the standard deviation of the final 
estimate of the output gap; it approximates the noise-to-signal ratio. The OPSING indicator shows the frequency 
with which the real-time estimates of the output gap reveal a different sign than the final estimates. The XSIZE 
indicator shows the frequency with which the absolute value of the revision exceeds the absolute value of the 
final estimates of the output gap. 



498 Felipe Morandé and Mauricio Tejada

aPPendix b
Estimation Based on the Kalman Filter and the EM 
Algorithm 

Our estimation approach follows the two-stage procedure proposed 
by Kim (2004, 2006). The first stage, described in the main text, 
consists in estimating a model that instrumentalizes the endogenous 
variables using the maximum log-likelihood method based on the 
error forecast and the conventional Kalman filter. The second stage is 
based on maximum log-likelihood techniques that combine the Kalman 
filter and the EM algorithm proposed by Hamilton (1989, 1990). The 
latter estimation is defined by the following series of equations (Kim 
and Nelson, 1999):

Kalman Filter

βt t
i j

t t
i j

t t
i j

t t
i j

t t
i jf|

( , )
|
( , )

|
( , )

|
( , )

|
( ,, , , ,− − − − −1 1 1 1 1P Hτ )) .

Hamilton’s EM Algorithm

Pr , | Pr , Pr | ;S S S S St t t t t t t− − − − −
  =    1 1 1 1 1ψ ψ

f x f x S S S St t t t t t
SS

t t t
tt

| | , , Pr , | ;ψ ψ ψ− − − − −( )= ( )  
−

∑∑1 1 1 1 1

1

l l f xt tθ θ ψ( )= ( )+ ( )



−ln | ;1

Pr , |
, , ,

|

| ,

S S
f x S S

f x

f x S S

t t t
t t t t

t t

t t t

− −
− −

−

−

  =
( )

( )

=

1 1
1 1

1

ψ
ψ

ψ

11 1 1 1

1

, Pr , |

|

ψ ψ

ψ
t t t t

t t

S S

f x
− − −

−

( )  
( )

Pr | Pr , | .S S St t t t t
St

ψ ψ  =  −

−

∑ 1

1



499Sources of Uncertainty in Conducting Monetary Policy in Chile

Approximations
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aPPendix c
Kalman Filter with Endogenous Regressors 

Kim (2006) uses the following series of equations to describe the 
Kalman filter with endogenous regressors.
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aPPendix d
Log-Likelihood Function 

The log-likelihood function defined by Kim and Nelson (1999) is 
as follows:
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aPPendix e
Bootstrap of the Decomposition of the Conditional 
Variance of the Forecast Error

Table E1 presents the results obtained from the bootstrap of the 
decomposition of the conditional variance of the forecast error for the 
three models (mean estimation and 95 percent confidence intervals). 
The table also shows, for comparison purposes, the previous results 
found under the assumption of Gaussian errors in the estimation. 
The bootstrap resampling followed the methodologies of Stoffer and 
Wall (1991) for state-space models that use the Kalman filter and 
Psaradakis (1998) for the sampling of errors with Markov regime 
changes.
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