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1. This arrangement is part of a broader movement in monetary policy design
in which the anchor of monetary policy is a target for inflation. See, for example,
Bernanke and others (1999).

2. One reason for considering a deviation from a target range as being rela-
tively more costly is its impact on credibility.

95

OPTIMAL MONETARY POLICY RULES UNDER
INFLATION RANGE TARGETING

Juan Pablo Medina
University of California, Los Angeles

Rodrigo O. Valdés
Ministry of Finance, Chile

Central banks resort to a variety of alternative arrangements in
formulating, conducting, and communicating monetary policy. One
increasingly popular type of arrangement is based on a target range
for inflation.1 In this setup the conduct of monetary policy is oriented
to keeping inflation within preannounced boundaries. For example,
the central banks of Brazil, Canada, Israel, New Zealand, and Swe-
den all have target zones for inflation, whose width ranges from 2 to
3 percentage points. Chile recently announced an inflation target range
of 2 to 4 percent, to begin in 2001. One can further distinguish two
alternative arrangements for the target range, namely, soft-edged
and hard-edged ranges. Under the former, deviations from the edges
of the range are considered as adverse as a deviation from a point
target, whereas in the latter, deviations from the target range are
considered to be relatively more undesirable.2 In other words, a soft-
edged regime could be understood as a “thick” point target regime.

C
Monetary Policy: Rules and Transmission Mechanisms, edited by Norman Loayza

and Klaus Schmidt-Hebbel, Santiago, Chile.   2002 Central Bank of Chile.



96 Juan Pablo Medina and Rodrigo O. Valdés

Other central banks (for example, that of the United Kingdom and
that of Chile until 2000) organize monetary policy around a point
target, and some implicitly regard upward deviations of inflation as
more costly than downward deviations. The latter is typically the
case of a country trying to disinflate (examples include Brazil, Colom-
bia, and Israel today and Chile during the 1990s).

In this paper we investigate how optimal monetary policy rules
change under these alternative formulations. In particular, we com-
pare optimal policy rules derived under alternative policy objectives
or loss functions for a simple, backward-looking, dynamic model of
the economy. We are interested in answering four related questions:
First, does range targeting yield optimal monetary policy reactions
that are less aggressive than otherwise?3 Second, are there relevant
nonlinearities for monetary policy under range targeting (for example,
are there zones in which the optimal policy is inaction)? Third, what
happens to optimal monetary policy reactions if the range edges are
harder, that is, if deviations from the range are considered highly
undesirable events? Finally, what are the implications of having an
asymmetric objective, in which positive inflation deviations are rela-
tively more undesirable than negative ones? Our purpose is not only
to answer these questions but also to provide some quantitative mea-
sures so as to evaluate their economic relevance. For that purpose
we consider a simple but realistic model of the economy calibrated
with Chilean data.

The economy for which we calculate optimal policy rules is ex-
tremely simple, described by two linear equations: an accelerationist
Phillips curve and an output gap equation. Monetary policy directly
controls the real interest rate, which, in turn, affects output with a
lag, and output affects inflation with another lag. For simplicity we
consider neither any central bank preferences regarding interest rate
variability nor any bounds for possible interest rate values. In gen-
eral, the rules we derive will prescribe a more aggressive monetary
policy than what a central bank would normally follow. Accordingly,
rather than taking the quantitative results we derive at face value,
they should be analyzed relative to the baseline scenario of rules for
a symmetric point inflation target (derived from a standard quadratic
loss function).

3. Other ways to make monetary policy less aggressive include the incorpora-
tion of interest rate smoothness among the central bank’s objectives and the
measurement of inflation over longer horizons (see, for example, Nessén, 1999).
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This paper is closely related to the literature on optimal mon-
etary policy rules developed by Svensson (2000), Ball (1999), McCallum
(1998), and Woodford (1999), among many others. It departs from an
otherwise standard analysis by comparing the implications of alter-
native nonquadratic loss functions. It is closely related to Orphanides
and Wieland (1999), who also study the effects of range targets for
inflation. The key difference between that paper and this one is that
Orphanides and Wieland consider no lags in the effects of the output
gap on prices, whereas we model this effect as taking one period. In
their model, monetary policy has a one-period control lag (that is, it
affects inflation after one period), whereas in ours it has a two-period
lag. Although this extra lag makes the model more realistic, it poses
the difficulty of having a second state variable.4

The main results we find are the following: Compared with a qua-
dratic loss function, range targeting yields a less aggressive optimal
monetary policy. For example, after a 1-percentage-point inflation
shock, interest rates increase by approximately one-third less when
there is range targeting with soft edges than when there is point
targeting. Optimal monetary policy in this setup is always active,
however. That is, even if inflation is well inside the range, unless it is
squarely in the middle of the target, interest rates should not be at
their neutral level. Monetary policy moves in a preemptive way: be-
cause the likelihood that a shock will move the economy out of the
range increases when it is not in the middle of the range, it is optimal
to move back the economy toward the center of the range. If range
edges are relatively hard, range targeting implies a more aggressive
monetary policy than when they are soft.5

If the loss function is the same as with point targeting, but with a
discrete jump to zero in the inflation target range, optimal monetary
policy does not change in any important way. If the loss function is
asymmetric, penalizing positive inflation deviations more than nega-
tive ones, optimal monetary policy involves higher average interest
rates. This implies that this loss function generates (on average) a
negative output gap.6

4. Orphanides and Wieland (1999) also include in their analysis a nonlinear
Phillips curve and model uncertainty. We, in turn, focus our analysis on the impli-
cations of having alternative loss functions.

5. Thus, there is an apparent trade-off between the width of the range and
the form of its edges. The width generates less aggressive responses, whereas
harder edges generate more aggressive responses.

6. A negative output gap is defined as one in which potential output exceeds
actual output.
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The paper is organized as follows. Section 1 presents the basic
model of the economy, discusses the procedure we use to transform a
continuous economy into a discrete one, and reviews the dynamic
programming framework we use to solve for the optimal policy rules.
Section 2 compares the optimal policy rules derived under alterna-
tive loss functions. Section 3 concludes.

1. GENERAL FRAMEWORK

This section presents the framework we use to calculate and com-
pare optimal monetary policy rules under alternative loss functions.
It describes the economy, the central bank’s preferences, and the
method we use to find optimal monetary policy rules.

1.1 The Economy

We consider a simple, dynamic, backward-looking economy de-
scribed by the following two equations:
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where �t is the gap between inflation in period t and its long-run tar-
get, yt is the output gap, rt is the real (or indexed) interest rate (mea-
sured as a deviation with respect to its long-run level), and �

�t   and y
t�

are (possibly correlated) serially uncorrelated mean-zero stochastic
shocks. In the equations �y, �r, and �y are constant parameters.

These two equations are similar to those presented in Ball (1999)
and Svensson (1997). Equation (1) is a standard accelerationist Phillips
curve, and equation (2) is a standard output gap equation (a dynamic
IS curve). Below we present an estimation of these equations using
data for the Chilean economy. Notice that in this setup monetary
policy has a two-period control lag over inflation.

At time t the central bank’s problem is to choose a sequence of
interest rates � ��

���� 0tr  so as to minimize the following expected
intertemporal loss function:
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where � is a discount factor, l(.) is an instantaneous loss function,
and xt is a vector of state variables xt = (�t, yt)'.

We seek to characterize the interest rate sequence through a
time-invariant (and probably nonlinear) policy function for alterna-
tive instantaneous loss functions. In particular, we seek to charac-
terize and compare optimal policy (reaction) functions when the loss
function is of the following type:

� �

� � � �

� �

� � � ��
�
�

��
�

�

������	�

����

��	����	�




,forbca
,forb
,forbca

22

2

22

HttHtH

HLtt

LttLtL

t

y
y

y
xl

where b, c, aj and j�  ( j = L, H) are constants.
This loss function includes the standard quadratic function with

weights a and b in inflation and output gap variability, respectively.
In this case 0���� HL  and aL = aH. It also includes less standard
setups such as target zones (for example, 0,0 ���� HL , and c = 1)
and asymmetric weights (for example, aL < aH). Table 1 summarizes
the five baseline cases we consider.7

Figures 1 and 2 show the alternative loss functions described
in table 1. The quadratic case is meant to represent the standard
point-target framework, whereas those with a zero value in the
(_1, +1) range represent alternative range targeting setups. We also
include an asymmetric objective function to represent higher costs of
positive inflation deviations.8

In sum, the problem is to choose a sequence � ��

���� 0tr that mini-
mizes equation (3) subject to equations (1) and (2). Under some regu-
larity conditions, this problem has a solution that can be represented
by a time-invariant policy function mapping the inflation and output
gaps onto the real interest rate, rt = h(xt), where xt is the vector of

7. Of course, one could also consider other parameters. Medina and Valdés
(2002) considers the case of a one-sided objective.

8. Other asymmetries that may in general arise include asymmetric shocks
and asymmetric responses of the economy.

(4)



Table 1. Parameter Values in Alternative Loss Functions

Loss function

Range with Range with Range with Asymmetric
Parameter Definition Quadratic soft edges hard edges discrete edges “hawk”

aL Weight on downward inflation variability 1.0 1.0 1.25 or 4.0 1.0 0.5

aH Weight on upward inflation variability 1.0 1.0 1.25 or 4.0 1.0 2.0

b Weight on output variability 0.5 0.5 0.5 0.5 0.5

c Weight on inflation variability inside the range 1.0 1.0 1.0 0.0 1.0

L� Distance of lower bound of range from center 0 –1 –1 –1 0
(percentage points)

H� Distance of upper bound of range from center 0 +1 +1 +1 0
(percentage points)

� Discount factor 0.95 0.95 0.95 0.95 0.95
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state variables (see, for example, Sargent and Ljungqvist, 1999). In
this case xt = (�t, yt)'.

Unfortunately, for the class of loss functions we consider, it is not
possible to find a closed-form solution for the function h(.). Only in
the well-known case of a quadratic problem it is possible to find a
vector F such that rt = F

'

xt yields the optimal solution. We there-
fore have to resort to numerical methods. In particular, we change
the original problem to one in which we constrain the states and
control variables to be a discrete and finite set of points. We then
apply standard dynamic programming techniques.9

9. Judd (1998) analyzes discrete-state space dynamic programming.

Figure 1. Loss Functions under Alternative Definitions of
Range-Targeting

Figure 2. Asymmetric and Discontinuous Loss Functions
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1.2 Discretization of the Continuous-State Space

We proceed as follows to transform the continuous economy de-
scribed by equations (1) and (2) and the control variable rt into a dis-
crete-state space economy. We first assume that the economy can be
in any of m possible states collected in a set � = {(�1, y1), (�2, y2),…,
(�m, ym)}. We further assume that the interest rate rt can take n
different values arranged in a set � = (r1, r2,…, rn ).

To preserve the dynamic and stochastic properties embedded in
equations (1) and (2), we calculate transition probabilities between
states that depend on the interest rate. In this way monetary policy
can be thought of as choosing alternative transition matrices of a
Markov chain of the economy.

Assume that the shocks  and y
t�  follow a bivariate normal dis-

tribution with variance-covariance matrix �. It is then straightfor-
ward to calculate the conditional distribution of the vector  xt = (�t,
yt)' conditional on  (�t-1, yt-1)  and rt-1 as the bivariate normal distri-
bution with mean of

and the following variance-covariance matrix:
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To construct the transition matrix associated with each interest
rate in �, we divide a rectangle (a

�
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rectangles �1, �2,…, �m and consider that the centers of each of these
rectangles form the set �. For each feasible interest rate rk �
� we
can define the transition probability  pi j

k  as the likelihood of a move-
ment from state (�i, yi) at time t _ 1 to state (�j, yj) one period ahead,
given that  rt _ 1 = rk. This probability is given by
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Armed with this set of transition matrices, we next find a solution
of the original problem using standard dynamic programming. Clearly,
because we consider a subset of the possible states of the economy,
this discretization is only an approximation. Moreover, it should be
clear that in the neighborhood of the borders of the rectangle (a

�
, b

�
) �

(ay, by) the approximation is far from accurate, for two reasons. One is
that the probability of moving further away from the center of the
rectangle is assumed to be zero, and the other is that the centers of the
small rectangles �j at the borders do not properly represent the values
that the system can take outside the (large) rectangle. When we calcu-
late optimal policy rules, we use the complete rectangle, but we only
consider the neighborhood of its center when we analyze and compare
the implications of alternative loss functions.

1.3 Discrete-State Space Dynamic Programming

With the economy represented in a discrete-state space, the original
problem of the central bank becomes:
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1 , for all i = 1,…, m and for all k = 1,…, n.

The Bellman equation associated with this problem is
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which, given the transition probabilities, can be written as
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for all i = 1,…, m and for all k = 1,…, n. Here V(�t, yt) is the optimal
value of the objective function starting from an inflation �t and
output gap yt. The solution of the central bank’s problem is charac-
terized by a value function V(.,.) that satisfies equation (6) and an
associated policy function r' = h(�, y) mapping the state of the
economy (�, y) onto an optimal choice of interest rate. Since equa-
tion (6) satisfies Blackwell’s sufficient conditions for a contraction
(see Stockey and Lucas, 1989, p. 54), it has a unique solution V*(.,.).

In cases in which the discrete-state space is small, it is not diffi-
cult to solve the Bellman equation applying an iterative algorithm.
Define v to be a vector in and T[.] to be an operator that maps
vector v into a new vector T(v) = (tv1, tv2,…, tvm) in which each ele-
ment tvi is given by
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Thus the Bellman equation can be represented by

� � ,vTv �

which can be solved by iterating until convergence the following
recursion:
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That is, for each pair (�t, yt), the function h yields the optimal
interest rate rt such that the central bank’s discounted intertemporal
loss function is minimized.

2. COMPARISON OF ALTERNATIVE LOSS FUNCTIONS

This section calculates and compares optimal monetary policy rules
for different loss functions using the methodology described above. In
order to provide realistic results, it uses an estimation of the economy
described by equations (1) and (2) using Chilean data. We then use
the model presented above to calculate policy functions for alterna-
tive objective functions and compare them against the standard qua-
dratic loss function.

2.1 Estimation and Calibration

We estimate equations (1) and (2) using Chilean quarterly and
semiannual data on core inflation and the output gap (calculated with
a Hodrick-Prescott filter) from 1986 to 1998. Table 2 presents the
basic results.10 It also presents the values of the parameters that we
finally use in the simulations. The interest rate is the short-term
indexed rate that the Central Bank of Chile used for monetary policy
during the period (the rate on its own ninety-day indexed securities
in 1986-95 and the overnight interbank interest rate thereafter).

Although we broadly use the ordinary least-squares estimates for
elasticities, we consider a lower innovation volatility in our simula-
tions. In the case of inflation, the main reason for this assumption is
that this variable displays significant ARCH (autoregressive condi-
tional heteroskedasticity) effects. In fact, a standard ARCH-LM test
on the equations in table 2 yields a p value of 0.06. Furthermore, as
Magendzo (1998) has documented, this volatility has a positive and
stable relationship with the inflation level. To verify this effect, we
estimate the same equation (1) but use the ratio of actual to trend
inflation instead of the value of actual inflation. The estimate still
shows a significant effect of the output gap on changes in (relative)

10. We also considered in the estimation a one-period-lagged direct effect of
interest rates on inflation. This was meant to capture the standard open-economy
transmission mechanism from monetary policy to inflation through the exchange
rate. The results, however, cannot be considered different from zero.
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inflation. More important, the standard error of the innovations in this
estimation is approximately 0.25. Considering this standard deviation
and an annual trend inflation of around 3 percent, we calibrate the model
using a quarterly standard deviation of 0.8 percent (for annualized infla-
tion). For output we consider a standard deviation of 1.0 percent, to
broadly take into account the effect of other known output determinants
in Chile, such as conditions in the mining sector and fiscal policy.

2.2 Quadratic Preferences

To evaluate the accuracy of our discretization of the economy,
we compare the optimal policy rules for a quadratic loss function
that results from using the algorithm presented in the previous
section with the results from a standard dynamic programming
procedure using the continous-state space economy. For the lat-
ter we use the standard linear regulator problem solution (see, for
example, Sargent and Ljungqvist, 1999).

Table 2. Estimates of Parameters in Inflation and Output
Gap Equations for Chile, 1986-98, and Values Chosen for
Model Calibrationa

Parameter estimates

Parameter Using quarterly data Using semiannual data Calibration

Inflation (Phillips curve)
�y 0.49 0.54 0.50

(0.20) (0.16)
�( �

�t ) 0.030 0.011 0.008
2R 0.08 0.43

Output gap
�y 0.61 0.32 0.60

(0.07) (0.11)
�r –0.43 –0.55 –0.50

(0.16) (0.32)
�( ) 0.015 0.015 0.010

2R 0.46 0.23
Correlation ( , y

t� ) –0.05 0.21 0.00

Source: Authors’ calculations.
a. Estimation method is ordinary least-squares. Newey-West-consistent standard errors in parentheses.
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Notice that because output is not that persistent, monetary policy
has to be quite active in order to affect inflation. We construct grids for
inflation and output in the [_5, +5] range with increments of 0.25 and
0.5, respectively. We search for optimal interest rates in the [_17, +17]
range with increments of 33 basis points at each point of the grid.11

Figure 3 presents the results of this exercise. The top left and top
right panels show the optimal interest rate deviation for given devia-
tions of inflation and the output gap, respectively. Each panel assumes

11. These grids imply that there are more than 58 million pi 
k j ' s.

Figure 3. Optimal Policy Functions with a Quadratic
Loss Function

Reaction to inflation deviation
output gap deviation = 0

Reaction to output deviation
inflation gap deviation = 0

Reaction to inflation deviation
output gap deviation = 1 percent

Reaction to output deviation
inflation gap deviation = 1 percent

Source: Authors’ calculations.
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that the other variable has a deviation equal to zero. The bottom pan-
els show the same functions but assume a positive (1 percent) devia-
tion of the other variable. As mentioned above, the accuracy of the
results is limited at the borders of the grid we consider. However, they
are surprisingly accurate once we move away from these borders. In-
deed, only in the policy response to extreme inflation deviations do the
two reaction functions diverge. In what follows we present results us-
ing deviations for the [_3, +3] range.

2.3 Range Targeting

Is monetary policy more or less aggressive with point or range
targets? The answer obviously depends on how hard are the edges of
the range under consideration. Figure 4 shows optimal policy reaction

Figure 4. Optimal Policy Functions under Soft-Edged
Range Targeting

Reaction to inflation deviation
output gap deviation = 0

Reaction to output deviation
inflation gap deviation = 0

Reaction to inflation deviation
output gap deviation = 1 percent

Reaction to output deviation
inflation gap deviation = 1 percent

Source: Authors’ calculations.
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functions for a soft-edged target range with a 2-percentage-point width.
To facilitate comparisons, it also presents the optimal reaction func-
tions for a quadratic loss function. The soft-edged range is represented
by a loss function with quadratic losses in the edges with the same
parameters as in the quadratic case (see table 1 and figures 1 and 2 for
details). It can be thought of as a “thick” point target.

The results show that, indeed, monetary policy is less aggressive
with a range target with soft edges. For all practical purposes, the
reaction functions are piecewise linear: when the inflation gap lies in
the [_1.5, +1.5] range, the policy rule is a line with a slope 30 percent
less steep than in the quadratic case. This means that monetary policy
is one-third less aggressive when there is a target range. Outside the
[_1.5, +1.5] range the monetary policy reaction function is still lin-
ear, with a similar slope, but it starts at a higher level (in absolute
value). The reaction function against output shocks is also piecewise
linear. It is almost equal to the policy function in the quadratic case
for gaps in the [_1.5, +1.5] range and less aggressive outside that
range (by approximately 80 basis points). The magnitude of these
differences is not large, but it is economically meaningful.

The results also show that monetary policy is always active. Even
when an inflation shock leaves the economy well inside the target
range, if it is not right at the middle of that range, interest rates
should not be equal to their neutral level. The intuition behind this
result is that monetary policy has to move in a preemptive way: be-
cause new shocks are coming in the future, being close to the borders
of the range is risky. Thus the central bank has to adjust interest
rates in such a way that the economy moves closer to the middle of
the target range.

Figure 5 shows the results for two alternative cases in which the
range edges are harder (a = 1.25 and a = 4). In these cases the opti-
mal policy functions have some nonlinearities, although these are
not substantial. When a = 1.25, that is, when a range deviation is
considered 25 percent worse than a point deviation, optimal policy is
still less aggressive with a target range than with a point target.
When range deviations are considered four times as bad as point de-
viations, policy is more aggressive. Numerically, following a 2-per-
centage-point inflation shock, interest rates respond by approximately
10 percent more than in the quadratic case. When shocks are in the
neighborhood of the target, differences are less important, and alter-
native loss functions using the relatively harder edges yield similar
outcomes.
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Figure 5. Optimal Policy Functions under Harder-Edged
Range Targeting

Reaction to inflation deviation
output gap deviation = 0

Reaction to output deviation
inflation gap deviation = 0

Reaction to inflation deviation
output gap deviation = 1 percent

Reaction to output deviation
inflation gap deviation = 1 percent

Source: Authors’ calculations.

Figure 6 presents the case of a range with discontinuous edges, in
which the loss function is the standard quadratic function that col-
lapses (discontinuously) to zero inside the range (_1, +1). This could be
thought of as a range that permits some limited flexibility, although
outside the range, losses are the same as in the point target case. In
other words, small deviations are not considered undesirable, whereas
larger deviations are as costly as in the case of a quadratic loss func-
tion. The result shows that from an economic point of view this range
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does not yield any room for a less aggressive monetary policy. Indeed,
the reaction functions in both cases are practically equal.

The intuition behind this result is simple. Because the economy is
subject to continuous shocks, it is very unlikely that the economy will
be very close to the middle of the range on a period-by-period basis.
Therefore it is immaterial whether inflation deviations are considered
neutral inside the target range. As a way to prevent movements out of
this range, monetary policy has to be equally active.

Figure 6. Optimal Policy Functions with a Discrete
Loss Function

Reaction to inflation deviation
output gap deviation = 0

Reaction to output deviation
inflation gap deviation = 0

Reaction to inflation deviation
output gap deviation = 1 percent

Reaction to output deviation
inflation gap deviation = 1 percent

Source: Authors’ calculations.
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2.4 Asymmetric Losses

If positive inflation deviations are considered more costly than nega-
tive ones (for example, because of credibility problems or because the
authorities are following a disinflation strategy), the loss function will
be asymmetric, penalizing positive deviations more than negative ones.
Figure 7 plots the policy functions for the case in which there is a
point target but positive deviations are considered twice as costly as
negative deviations (that is, aL = 1, aH = 2).

Figure 7. Optimal Policy Functions with an Asymmetric
Loss Function

Reaction to inflation deviation
output gap deviation = 0

Reaction to output deviation
inflation gap deviation = 0

Reaction to inflation deviation
output gap deviation = 1 percent

Reaction to output deviation
inflation gap deviation = 1 percent

Source: Authors’ calculations.
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The result, as expected, is that monetary policy is, on average,
tighter than in the quadratic (symmetric) case. Even when inflation is
on target and the output gap is zero, interest rates have a positive bias.
In general, reaction functions are still linear with respect to output
deviations (although at a higher level), whereas they are clearly non-
linear with respect to inflation, especially for large positive inflation
deviations. When inflation is very low, the reaction function is parallel
to that in the quadratic case (in this case, because aL = 1, they are
practically equal). But when inflation is positive, interest rates are
increasingly higher in the former case.

Because interest rates are on average higher in the economy
with asymmetric preferences, it is also the case that the output
gap is, on average, smaller. That is, there is a bias against output.

3. CONCLUDING REMARKS

This paper has investigated how optimal monetary policy rules
change when the central bank considers alternative loss functions.
In particular, it has evaluated the implications of considering a
range target for inflation in a simple model calibrated to the Chil-
ean economy.

The answers that this paper provides to the four questions
posed in the introduction are the following. First, inflation range
targeting indeed produces a less aggressive monetary policy re-
sponse only when the range edges are not hard. If these edges are
sufficiently hard, a range target involves more aggressive optimal
monetary policy reactions. Specifically, a soft-edged range implies
that interest rates move a third less than in the case of a point
target. If the loss function is the same as in the case of a point
target, but with losses equaling zero when inflation lies inside the
target range, then optimal monetary policy does not change.

Second, there are some nonlinearities, but their economic rel-
evance is not great. Interestingly, there are no inaction zones for
monetary policy when there is range targeting. That is, monetary
policy should always react to shocks, even if inflation is well inside
the target range.

Third, if inflation deviations from the target range are consid-
ered highly undesirable events__that is, if the target range has hard
edges__optimal monetary policy will be more aggressive than in the
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case of a point target, in which deviations are always undesirable, but
to a lesser extent. Therefore range targeting does not imply a less
active monetary policy. The optimal policy will be more or less aggres-
sive, depending on how hard the range edges are.

Finally, if positive inflation deviations are considered relatively
more undesirable than negative ones, optimal monetary policy will
be tighter than when the objective is symmetric. This means that in
this environment the average output gap will be negative.
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