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and Plausibility in Monetary Policy 

analysis: additional results 

Bennett T. McCallum
Carnegie Mellon University

It is almost superfluous to begin by emphasizing that recent 
research in monetary policy analysis has featured a great deal of 
work concerning conditions for determinacy—that is, existence of 
a unique dynamically stable rational expectations equilibrium—
under various specifications of policy behavior.1 Indeed, there are 
a number of papers in which determinacy is the only criterion for 
a desirable monetary policy regime that is explicitly mentioned.2

By contrast, I have argued in recent publications (McCallum, 
2003a, 2007) that least-squares (LS) learnability is a compelling 
necessary condition for a rational expectations (RE) equilibrium 
to be considered plausible, since individuals must somehow 
learn about the exact nature of an economy from data generated 
by that economy itself, while the LS learning process is biased 
toward a finding of learnability. A similar position has also been 
expressed by Bullard (2006). From such a position it follows that 
in conditions in which there is more than one dynamically stable 
RE solution—that is, indeterminacy—there may still be only one 
RE solution that is economically relevant, if the others are not 
LS learnable. In this sense, LS learnability is arguably a more 
important criterion than determinacy. 

1. Prominent examples include Benhabib et al. (2001), Clarida, Galí, and Gertler 
(1999), Rotemberg and Woodford (1999), Sims (1994), and Woodford (2003). Discussion 
in a leading textbook is provided by Walsh (2003).

2. See, for example, Carlstrom and Fuerst (2005). These authors would almost 
surely include other criteria if explicitly asked.
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It may be useful to expand briefly on the contention that LS 
learnability is a compelling necessary condition. The argument begins 
with the idea that, in actual economies, agents must ultimately obtain 
quantitative details concerning their economy, necessary for forming 
expectations, from data generated by that economy. Accordingly, the 
same should be true for the model economy used by a researcher. There 
are many conceivable learning processes, of course, so it would be 
rash to presume that any single one is relevant. Thus, it is not argued 
here that LS learnability is a sufficient condition for a RE equilibrium 
to be plausible. But the setup for LS learnability (see Evans and 
Honkapohja, 2003) is specified in a way that is, in a sense, biased 
towards a finding of learnability. Specifically, it assumes that agents 
know the correct structure qualitatively—that is, they know which 
variables are relevant. In addition, the process assumes that agents are 
collecting an ever-increasing number of observations on all relevant 
variables while the structure is remaining unchanged. Furthermore, 
the agents are estimating the relevant unknown parameters with an 
appropriate estimator.3 Consequently, it seems, all in all, that if a 
proposed RE solution is not learnable by the LS process in question, 
it is implausible that it could prevail in practice. 

Substantively, McCallum (2007) demonstrates that, in a very wide 
class of linear RE models, determinacy implies LS learnability (but not 
the converse) when individuals have knowledge of current conditions 
available for use in the learning process. This strong result does not 
pertain, however, if individuals have available, in the learning process, 
only information regarding previous values of endogenous variables.4 
One task of the present paper, accordingly, is to investigate the 
situation that is obtained when only lagged information is available. 
In addition, the paper will explore results that pertain when an 
alternative criterion of model plausibility, provisionally termed “well-
formulated,” characterizes the model’s structure. In particular, it is 
shown that models that are well formulated, in the defined sense, often 
(but not invariably) possess the property of E-stability and hence LS 
learnability if current-period information is available in the learning 
process, even if determinacy does not prevail. Thus plausibility of a 
RE solution requires both that it be learnable and that the model at 

3. A bit of additional discussion of the process is given below in section 2. Also see 
Evans and Honkapohja (2001, pp. 232-38).

4. Another limitation of the analysis of McCallum (2007) is that it considers only 
solutions of a form that excludes “resonant frequency sunspot” solutions. That limitation, 
which is maintained here, is discussed briefly in section 5.
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hand be well formulated. A sufficient condition for both of these to hold, 
requiring that certain matrices have positive dominant diagonals, is 
introduced and considered below. Unfortunately, the situation in the 
case of lagged information is less favorable—that is, learnability can 
be assured only in special cases, for which no general characterization 
has been found. 

1. Model and deTerMinaCy

It will be useful to begin with a summary of the formulation and 
results developed in McCallum (2007). Throughout, we will work with 
a model of the form

yt = AEt yt+1 +Cyt–1 +Dut, (1)

where yt is a m×1 vector of endogenous variables, A and C are m×m 
matrices of real numbers, D is m×n, and ut is a n×1 vector of exogenous 
variables generated by a dynamically stable process

ut = Rut–1 + εt, (2)

with εt a white noise vector. It will not be assumed, even initially, that 
A is invertible. This specification is useful in part because it is the one 
utilized in Section 10.3 of Evans and Honkapohja (2001), for which 
E-stability conditions are reported on their p. 238.5 Furthermore, 
the specification is very broad; in particular, any model satisfying 
the formulations of King and Watson (1998) or Klein (2000), can be 
written in this form—which will accommodate any number of lags, 
expectational leads, and lags of leads (see the appendix).

Following McCallum (1983, 1998), consider solutions to model 
(1)–(2) of the form

yt  = Ωyt–1 +Γut, (3)

in which Ω is required to be real. Then, Etyt+1 = Ω(Ωyt–1 + Γut) + ΓRut, 
and straightforward undetermined-coefficient reasoning shows that 
Ω and Γ must satisfy

5. Constant terms can be included in the equations of (1) by including an exogenous 
variable in ut that is a random walk whose innovation has variance zero. In this case 
there is a borderline departure from process stability. 
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AΩ2 – Ω + C = 0 (4)

Γ = AΩΓ + AΓR + D.  (5)

For any given Ω, equation (5) yields a unique Γ generically,6 but 
there are many m×m matrices that solve (4) for Ω. Accordingly, the 
following analysis centers on equation (4). Since A is not assumed to 
be invertible, we write

A 0
0 I

=
I -C
I 0 I

2












































Ω
Ω

Ω
,
 

(6)

in which the first row reproduces the matrix quadratic (4). Let the 
2m×2m matrices on the left- and right-hand sides of equation (6) 
be denoted A and C, respectively. Then, instead of focusing on the 
eigenvalues of A C-1 , which does not exist when A is singular, we 
solve for the (generalized) eigenvalues of the matrix pencil (C – λA), 
alternatively termed the (generalized) eigenvalues of C with respect 
to A (see, for example, Uhlig, 1999). Thus, instead of diagonalizing 
A C-1 , as in Blanchard and Khan (1980), we use the Schur generalized 
decomposition, which serves the same purpose. Specifically, the 
Schur generalized decomposition theorem establishes that there 
exist unitary matrices Q and Z such that Q C Z = T and Q A Z = S 
with T and S triangular.7 Then, eigenvalues of the matrix pencil 
(C – λA) are defined as tii/sii. Some of these eigenvalues may be 
“infinite,” in the sense that some sii may equal zero. This will be 
the case, indeed, whenever A and therefore A are of less than full 
rank, since then S is also singular. All of the foregoing is true for 
any ordering of the eigenvalues and associated columns of Z (and 
rows of Q). For the present, let us focus on the arrangement that 
places the tii/sii in order of decreasing modulus.8 

6. Generically, I-R´ ⊗ [(I − ΑΩ)−1 Α] will be invertible, permitting solution of (5) 
for vec(Γ). Invertibility of (I − AΩ) is discussed in section 3.

7. Provided only that there exists some λ for which det[C − λA] ≠ 0. See Klein 
(2000) or Golub and Van Loan (1996, p. 377). Note that in McCallum (2007) the matrices 
A and A are denoted A and A11, respectively.

8. The discussion proceeds as if none of the tii/sii equals 1.0 exactly. If one 
does, the model can be adjusted, by multiplying some relevant coefficient by (for 
example) 0.9999. 
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To begin the analysis, pre-multiply equation (6) by Q. Since 
QA SH=  and QC = TH, where H ≡ Z–1, the resulting equation can 
be written as 

S
S S

H H
H H

=
T 0
T
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 (7)

The first row of equation (7) reduces to

S11(H11Ω + H12) Ω = T11(H11Ω + H12 ).  (8)

Then, if H11 is invertible, the latter can be used to solve for Ω as

Ω = −H11
−1 H12  = −H11

−1(−H11 Z12 Z22
−1) = Z12 Z22

−1, (9)

where the second equality comes from the upper-right-hand submatrix 
of the identity HZ = I, provided that H11 is invertible, which is assumed 
without significant loss of generality.9,10

As mentioned above, there are many solutions Ω to equation 
(4). These correspond to different arrangements of the eigenvalues, 
which result in different groupings of the columns of Z and therefore 
different compositions of the submatrices Z12 and Z22. Here, with 
the eigenvalues tii/sii arranged in order of decreasing modulus, the 
diagonal elements of S22 will all be non-zero, provided that S has 
at least m non-zero eigenvalues, which is assumed to be the case.11 
Clearly, for any solution under consideration to be dynamically 
stable, the eigenvalues of Ω must be smaller than 1.0 in modulus. In 
McCallum (2007) it is shown that 

Ω = Z22 S22
−1 T22 Z22

−1, (10)

9. This invertibility condition, also required by King and Watson (1998) and Klein 
(2000), obtains except in degenerate special cases of equation (1) that can be solved by 
simpler methods than considered here. Note that the invertibility of H11 implies the 
invertibility of Z22, given that Z and H are unitary. 

10. Note that it is not being claimed that all solutions are of the form (9).
11. From its structure it is obvious that A has at least m nonzero eigenvalues 

so, since Q and Z are nonsingular, S must have rank of at least m. This necessary 
condition is not sufficient for S to have at least m nonzero eigenvalues, however; hence 
the assumption. 
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so Ω has the same eigenvalues as S22
−1 T22. The latter is triangular, 

moreover, so the relevant eigenvalues are the m smallest of the 2m 
ratios tii/sii (given the decreasing-modulus ordering). For dynamic 
stability, the modulus of each of these ratios must then be less than 
1. (In many cases, some of the m smallest moduli will equal zero.)

Let us henceforth refer to the solution under the decreasing-
modulus ordering as the MOD solution. Now suppose that the MOD 
solution is stable. For it to be the only stable solution, there must be 
no other arrangement of the tii/sii that would result in a Ω matrix with 
all eigenvalues smaller in modulus than 1.0. Thus, each of the tii/sii for 
i = 1,…, m must have modulus greater than 1.0, some perhaps infinite. 
Is there some m×m matrix whose eigenvalues relate cleanly to these 
ratios? Yes, it is the matrix F ≡ (I – AΩ)–1A, which appears frequently 
in the analysis of Binder and Pesaran (1995, 1997).12 Regarding this F 
matrix, it is shown that, for any ordering such that H11 is invertible, 
including the MOD ordering, we have the equality

H11F H11
−1 = T11

−1S11,  (11)

which implies that F has the same eigenvalues as T11
–1S11. In other 

words, it is the case that the eigenvalues of F are the same, for any 
given arrangement of the system’s eigenvalues, as the inverses of the 
values of tii/sii for i = 1, …, m. Under the MOD ordering, these are 
the inverses of the first (largest) m of the eigenvalues of the system’s 
matrix pencil. Accordingly, for solution (9) to be the only stable 
solution, all the eigenvalues of the corresponding F must be smaller 
than 1.0 in modulus. This result, stated in different ways, is well 
known from Binder and Pesaran (1995), King and Watson (1998), 
and Klein (2000), and is an important generalization of one result of 
Blanchard and Khan (1980) for a model with nonsingular A.

Thus we have established notation for models of form (1)–(2) and 
have reported results showing that the existence of a unique stable 
solution requires that all eigenvalues of the defined Ω matrix and the 
corresponding F be less than 1.0 in modulus. It will be convenient to 
express that condition as follows: all  λΩ  < 1 and all  λF  < 1.

12. There is no general proof of invertibility of [I − AΩ], but if AΩ were by chance 
to have some eigenvalue exactly equal to 1.0, that condition could be eliminated by 
making some small adjustment to elements of A or C. Also, see section 4 below.
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2. e-sTabiliTy in Two Cases

Let us now turn to conditions for learnability under two different 
information assumptions. First we will review the main results from 
McCallum (2007), which assumes that agents have full information on 
current values of endogenous variables during the learning process, 
and then we will go on to the second assumption, namely, that only 
lagged values of endogenous variables are known during the learning 
process. The manner in which learning takes place in Evans and 
Honkapohja’s analysis is as follows. Agents are assumed to know the 
structure of the economy as specified in equations (1) and (2), in the 
sense that they know what variables are included, but do not know the 
numerical values of the parameters. What they need to know, to form 
expectations, is values of the parameters of the solution equations (3). 
In each period t, they form forecasts on the basis of a least squares 
regression of the variables in yt–1 on previous values of yt–2 and any 
exogenous observables. Given those regression estimates, however, 
expectations of yt+1 may be calculated assuming knowledge of yt 
or, alternatively, assuming that yt–1 is the most recent observation 
possessed by agents and is thus usable in the forecasting process. In 
the former case, the conditions for E-stability reported by Evans and 
Honkapohja (2001) are that the following three matrices must have 
all eigenvalues with real parts less than 1.0:

F ≡ (I − AΩ)−1A, (12a)

I A C F-
1Ω( )




′
⊗

−
,  (12b)

′ ⊗R F.  (12c)

In the second case, however, the analogous condition (Evans 
and Honkapohja, 2001) is that the following matrices must have all 
eigenvalues with real parts less than 1.0:

A (I +Ω), (13a)

′ ⊗ ⊗Ω ΩA I A+ ,  (13b)

′ ⊗ + ⊗R A I AΩ.  (13c)
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Except in the case that Ω = 0, which will result when C = 0, these 
conditions are not equivalent to those in equation (12).

It is important to note that use of the first information assumption 
is not inconsistent with a model specification in which supply and 
demand decisions in period t are based on expectations formed in 
the past, such as Et–1yt+j or Et–2yt+j. It might also be mentioned 
parenthetically that conditions (12) and (13) literally pertain to the 
E-stability of the model (1)–(2) under the two information assumptions, 
not its learnability. Under quite broad conditions, however, E-stability 
is necessary and sufficient for LS learnability. This near-equivalence 
is referred to by Evans and Honkapohja as the “E-stability principle” 
(Evans and Honkapohja, 1999, 2001). Since E-stability is technically 
easier to verify, applied analysis typically focuses on it, rather than 
on direct exploration of learnability. 

Given the foregoing discussion, it is a simple matter to verify that 
if a model of form (1)–(2) is determinate, then it satisfies conditions 
(12). First, determinacy requires that all eigenvalues of F have 
modulus less than 1.0, so their real parts must all be less than 1.0, 
thereby satisfying (12a). Second, from equation (4) it can be seen that 
(I–AΩ)−1C = Ω. Therefore, matrix (12b) can be written as Ω´ ⊗ F. 
Furthermore, it is a standard result (Magnus and Neudecker, 1988) 
that the eigenvalues of a Kronecker product are the products of the 
eigenvalues of the relevant matrices (for example, the eigenvalues 
of Ω´ ⊗ F are the products λΩ λF). Therefore, condition (12b) holds. 
Finally, since  λF  < 1, condition (12c) holds provided that all 
 λR

  ≤ 1, which has been assumed by specifying that equation (2) is 
dynamically stable.

Determinacy does not imply learnability, however, under the 
second information assumption. This point, which is developed by 
Evans and Honkapohja (2001), can be illustrated by means of a 
bivariate example.13 Let the yt vector in equation (1) include two 
variables, y1t and y2t, related by the dynamic model that follows:

y
y

E y
E y

t

t

t t

t t

1

2

1 1

2 1

0 01 0 01
0 99 0 01










 =
−

−















 +

+

. .
. . 





 +





















 +






−

−

0 02 1 10
0 01 0 06

1 0
0 1

1 1

2 1

. .

. .
y
y

t

t

















u
u

t

t

1

2  (14)

13. Its specification is close numerically to the qualitative version of the Evans and 
Honkapohja example that is used in McCallum (2007), pp. 1386–88. 
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Then, for the MOD solution we have 

AΩ=
−

−











 − −







0 01 0 01
0 99 0 01

0 0218 1 1133
0 095 0 774

. .
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. .
. . 


 =
− −











0 0012 0 0189
0 0225 1 1099

. .
. .

,
 

(15)

with eigenvalues of Ω being –0.148 and –0.604, while 

F = 
0 1604 0 00831

9 040 0 0893
. .

. .
,

−













which has (complex) eigenvalues 0.1249 ± 0.2717 i. Inspection of these 
shows that this solution is determinate, and that conditions (12a) and 
(12b), relevant for E-stability in the case in which current information 
is available during learning, are satisfied. Let us assume R = 0, that 
is, white noise disturbances, for simplicity. Then the determinate 
RE solution is E-stable and learnable under the first information 
assumption.

But for the case with only lagged information during learning, 
it is necessary to consider the eigenvalues of the matrices shown in 
expressions (13). For equation (13a), the matrix A(I + Ω) is

− −











0 0112 0 0089
1 0125 1 0999

. .
. .

whose eigenvalues are -0.0030 and 1.0918. The last of these violates the 
condition for equation (13a), however, so under the lagged-information 
assumption, the relevant E-stability condition is not satisfied and the 
determinate RE equilibrium is not LS learnable.

This result exemplifies the fact that determinacy is not generally 
sufficient for learnability of RE solutions, although it is sufficient 
under the first information assumption. Of equal importance, in my 
opinion, is the fact that determinacy is not necessary for learnability. 
In particular, the MOD solution can be learnable, and be the only 
learnable solution of form (3), in cases in which indeterminacy prevails. 
One such example is given in McCallum (2007).14 In such cases, the 

14. I take this opportunity to point out that McCallum (2007, p. 1386), errs in 
stating that when the eigenvalues are … “30.65, −0.532, −0.123, and 0.000 … both 
stable solutions are learnable.” Actually, only the MOD solution is learnable.
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position that learnability is necessary for a solution to be plausible 
would suggest that there may be no problem implied by the absence 
of determinacy.15 

3. well-forMUlaTed Models

McCallum (2003b) suggests that there is a distinct and neglected 
property that dynamic models should possess to be considered “well-
formulated” and plausible for the purposes of economic analysis. 
To begin the discussion, consider first the single-variable case of 
specification (1), 

yt = αEt yt+1 + cyt–1 + ut,  (16)

with ut = (1 − ρ)η + ρut–1 + wt, with  ρ  < 1 and wt white noise. Thus, 
ut is an exogenous forcing variable with an unconditional mean of η 
(assumed nonzero) and units have been chosen so that there is no 
constant term. Applying the unconditional expectation operator to 
equation (16) yields

Eyt = αEyt+1 + cEyt–1 + η. (17)

In this case, yt will be covariance stationary, and we have

Ey
a ct = − + 

η
1 ( )

.
 

(18)

But from the latter, it is clear that as a + c approaches 1.0 from 
above, the unconditional mean of yt approaches −∞ (assuming, 
without loss of generality, that η > 0), whereas if a + c approaches 
1.0 from below, the unconditional mean approaches +∞. Thus, 
there is an infinite discontinuity at a + c = 1.0. This implies that a 
tiny change in a + c could alter the average (that is, steady–state) 
value Eyt from an arbitrarily large positive number to an arbitrarily 
large negative number. Such a property seems highly implausible 
and therefore unacceptable for a well-formulated model.16 The 

15. Disregarding, that is, “sunspot” solutions not of form (3).
16. The model could be formulated with the exogenous variable also written in terms 

of percent or fractional deviations from the reference level η, for example, ût = ut − η. 
But that would not alter the relationship between Eyt and η, which can be extremely 
sensitive to tiny changes in a + c. 
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substantive problem is not eliminated, obviously, by adoption of the 
zero-measure exclusion a + c ≠ 1.

In light of the foregoing observation, it is my contention that, 
to be considered well formulated (WF), the model at hand needs to 
include a restriction on its admissible parameter values; a restriction 
that rules out a + c = 1 and yet admits a large interval of values that 
includes (a,c) = (0,0). In the case at hand, the appropriate restriction is 
a + c < 1. Of course, a + c > 1 would serve just as well mathematically 
to avoid the infinite discontinuity, but it seems clear that a + c < 1 
is vastly more appropriate from an economic perspective since it 
includes the values (0,0)17 Since we want this condition to apply to 
a + c sums between zero and that value that pertains to the model at 
hand, our requirement for WF is that a and c satisfy 1 − ε (a + c) > 0 
for all 0 ≤ ε ≤ 1. [It should be clear, in addition, that the foregoing 
argument could be easily modified to apply to yt processes that are 
trend stationary, rather than strictly (covariance) stationary.] It is 
shown in McCallum (2003b) that under this requirement, plus a second 
one to be discussed shortly, the univariate model (16) is invariably 
E-stable.18 

Next, for the bivariate case of model (1), extension of the foregoing 
WF property requires that A and C be such that det[I − ε(A + C)] is 
positive for all 0 ≤ ε ≤ 1; otherwise, the steady-state values of the 
variables may possess infinite discontinuities. But there are other 
requirements as well. Let acij temporarily denote the ijth element 
of A + C. Then the model with y1 = Ey1t, y2 = Ey2t, η1 = Eu1t and 
η2 = Eu2t implies

y
y

ac ac
ac ac

y
y

1

2

11 12

21 22

1

2

1

2










 =




















 +





η
η





  (19)

so that Ey = [I − (A + C)]−1 η can be written as
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17. In models of the linear form (16), one would expect coefficients a and c typically 
to represent elasticities and often to be numerically small relative to 1. 

18. That paper’s analysis of multivariate systems is, however, unsatisfactory.
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where ∆ = det[I – (A + C)] = (1 – ac11)(1 – ac22) – ac12 ac21. Then 
the counterpart of the univariate requirement that 1 − ε (a + c) > 0 
includes the condition ∆ > 0 [for all 0 ≤ ε ≤ 1].19 We must rule out, 
however, the case in which ∆ > 0 results from 1 – εac11 and 1 – εac22 
both being negative.20 The condition on ∆ should be extended, 
therefore, to also require 1 – εac11 > 0 and 1 – εac22 > 0. 

How are these WF requirements extended to pertain to cases with 
more than two variables? It appears that the appropriate requirement 
is that [I – ε(A + C)] be a P-matrix, which by definition has all its 
principal minors positive and thereby imposes the conditions discussed 
for the cases above in which m equals 1 and 2. Other properties of any 
P-matrix are that its inverse exists and is itself a P-matrix, and that 
all its real eigenvalues are positive.21

An alternative possibility that is of interest would be to require 
[I – ε(A + C)] to be a positive dominant-diagonal matrix.22 This 
requirement would have implications for the E-stability status 
of the model, as will be discussed below, and positive dominant-
diagonal (PDD) matrices have an important tradition in dynamic 
economics stemming from the literature on multimarket stability 
analysis. This condition is, however, somewhat stronger than is 
actually required by our objective of ruling out specifications in 
which leading implications of the model are hyper-sensitive to 
parameter values. 

As a brief but relevant digression, one example of a matrix that is 
a P-matrix and yet is not positive dominant-diagonal is as follows:

0 08 0 92 0 90
0 92 0 07 0 03
0 72 0 30 0 04

. . .

. . .
. . .

.
−

−
−

















  

(21)

Clearly, the entries in any row show immediately that this matrix 
is not positive dominant diagonal (PDD). But its determinant is 
0.3087 and the three second-order minors are 0.0118, 0.651, and 
0.852. Since the diagonal elements are also all positive, the matrix 

19. Henceforth the bracketed condition is to be understood wherever relevant.
20. This is clear for the case in which A + C is a diagonal matrix.
21. On the topic of P-matrices, see Horn and Johnson (1991) and Gale and Nikaido 

(1965).
22. Again, see Horn and Johnson (1991) and Gale and Nikaido (1965).
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is a P-matrix. For future reference, note that its eigenvalues are 
–0.0067 + 1.2319i, –0.0067 – 1.2319i, and 0.2034. Thus the example 
illustrates the fact that, although a P-matrix cannot have a negative 
real eigenvalue, it can have a complex eigenvalue pair with negative 
real parts.23 

Returning now to the main line of argument, there is a second 
type of discontinuity that should also be eliminated for a model to be 
viewed as WF, namely, infinite discontinuities in its impulse response 
functions. In model (1)–(2) with solution (3), the impulse response to 
the shock vector ut involves the matrix Γ, which is given by 

Γ = AΩΓ + AΓR + D.  (22)
 
Thus, (I − AΩ) Γ = AΓR + D so using F = (I − AΩ)–1A, equation (22) 
can be written as

Γ = FΓR + (I − AΩ)–1D.  (23)

Then, using the well-known identity that, for any conformable 
matrix product ABC it is true that vec ABC = (C´ ⊗ A) vec B,24 it 
follows that

vec vec vecΓ Γ Ω= ′⊗( ) + −( )





−R F I A D1
 (24)

implying

vec vecΓ Ω= − ′⊗( )



 −( )





− −I R F I A D
1 1

.  (25)

Accordingly, our second WF requirement is for [I − (R´ ⊗ F)] and 
(I − AΩ) to be well behaved in the same manner as I − (A + C), that 
is, that each is a P-matrix. Again it is of interest to consider the 
possibility of requiring that each of these be a PDD matrix. 

23. See Horn and Johnson (1991, p. 123).
24. See, for example, Evans and Honkapohja (2001, p. 117) or Magnus and 

Neudecker (1988, p. 28).
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4. e-sTabiliTy in wf Models?

In this section, the concern is with the relationship between 
models that are WF and those in which the MOD solution is learnable. 
That there may be some significant relationship is suggested by the 
following identity:

(I − AΩ)(I − F)(I − Ω) = I − (A + C),  (26)

which is mentioned by Binder and Pesaran (1995).25 From this equation, 
it is clear that that non-singularity of I − (A + C) implies that the three 
matrices (I − AΩ), (I − F) and (I − Ω) are all nonsingular. In addition, 
we can see that the WF requirement that det[I − ε(A + C)] is positive 
for all 0 ≤ ε ≤ 1 also implies that the real eigenvalues of Ω, AΩ, and F 
must all be less than 1.0 in value.26 To make that argument, consider 
the situation when A and C are multiplied by ε, 0 ≤ ε ≤ 1. For very 
small values of ε, the matrices Ω, AΩ, and F will all be small so the 
eigenvalues of all four matrices in equation (26) will be close to 1.0 and 
their determinants will be positive. Now let ε increase and approach 
1.0. If I − ε(A + C) remains nonsingular throughout this process, so too 
will each of the three matrices on the left-hand side of equation (26). 
Since a real eigenvalue of zero would imply singularity for any of the 
matrices in question, and since eigenvalues are continuous functions 
of the matrix elements, the stated result is valid. 

Accordingly, the WF requirement that det[I − ε(A + C)] is positive 
for all 0 ≤ ε ≤ 1 also implies that the real eigenvalues of Ω, AΩ, and 
F are all less than 1.0 in value. In addition, the requirement that the 
matrix [I – (R' ⊗ F)] be a P-matrix implies that all the real eigenvalues 
of (R' ⊗ F) will be smaller than 1.0. Therefore, condition (12c), as well as 
(12a), is satisfied. What about the remaining condition, for the current-
information case, (12b)? Here we recognize that, by rearrangement of 
equation (4), (I − AΩ)−1C = Ω. Accordingly, condition (12b) becomes 
Ω' ⊗ F. But then note that with the MOD ordering it is the case that 
all   λΩ  < 1/  λF  so all  λΩ   λF <1. But  λΩ   λF  =   λΩλF ≥ Re(λΩλF)  
so it follows that this condition is invariably satisfied. Accordingly, 

25. The identity can be verified by writing out F in the left side of equation (26), 
multiplying, cancelling, and inserting C for Ω − AΩ2.

26. Here, and often in what follows, I use the fact that the eigenvalues of a matrix 
of form (I − B) satisfy λI−B = 1 − λB. 
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with current information available during the learning process, 
the MOD solution would be learnable, when the model is WF, if all 
eigenvalues were real.

Unfortunately, there is no guarantee that the real part of all 
complex eigenvalues will be smaller than 1.0. The situation is 
described by Horn and Johnson (1991) as follows: “if A is a n–by–n 
P-matrix ... then every eigenvalue of A lies in the open angular wedge 
Wn ≡ {z = reiθ:  θ  < π – (π/n), r > 0}. Moreover, every point in Wn is an 
eigenvalue of some n-by-n P-matrix.” But for n > 2, Wn includes points 
in the in the two left-hand quadrants in the complex plane. Therefore, 
it cannot be argued that, in general, the WF condition implies LS 
learnability for the MOD solution.

In this regard, note that, since A and C are matrices of real numbers, 
I – (A + C) will have only real eigenvalues if A + C is symmetric. And 
since eigenvalues are continuous functions of the elements of the matrix 
in question, these eigenvalues will be real if A + C does not depart 
too far from symmetry. Diagonal matrices are of course symmetric, 
so it is not surprising that dominant-diagonal matrices have strong 
properties pertaining to their eigenvalues. In particular, if a real matrix 
is positive diagonal dominant (PDD), that is, is diagonal-dominant 
with all diagonal elements positive, then all its eigenvalues will have 
positive real parts—see Horn and Johnson (1985). Accordingly, if we 
were to require (as mentioned above) that I – (A + C), (I – AΩ), and 
[I – (R' ⊗F)] were PDD, rather than just P-matrices, then learnability 
would be implied. That possibility is not, however, justified by the 
line of argument used to motivate the WF condition, that is, by the 
desirability of ruling out infinite discontinuities in impulse response 
functions (and the model’s steady-state values).

The argument, then, is that being WF is an additional, distinct, 
plausibility condition to be required along with learnability. Only if 
a RE solution is both learnable, and results from a model that is WF, 
would it be considered as a plausible candidate for a RE solution that 
might prevail in reality. This may seem like a rather demanding 
requirement. But most realistic models utilized in monetary policy 
analysis easily meet both of these conditions; difficulties arise primarily 
in the case of zero-lower-bound situations, very strong policy responses 
to expected future conditions, and other extreme conditions. 

In any case, the potential attractiveness of the WF requirement, 
in addition to that of LS learnability, is exemplified by an example 
considered for other purposes in McCallum (2004). The example 
in table 2 of that paper combines two univariate models of form 
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(1)–(2), one of which has two explosive solutions and the other 
of which has two stable solutions.27 Small off-diagonal elements 
of the A and C matrices are added to make the combined model 
a bivariate example that is not reducible (while barely changing 
the system eigenvalues). In this bivariate model it is found that 
there is a unique stable solution.28 Under the current-information 
assumption, then, this equilibrium is learnable as well as 
determinate. It hardly seems plausible, however, to believe that 
the combination of an explosive sector plus an indeterminate 
sector, with only minimal interaction between them, would result 
in overall behavior reflecting a well-behaved, unique equilibrium. 
Thus the finding that the determinate and learnable solution 
pertains to a model that is not well-formulated, is highly relevant 
and leads to a conclusion that seems entirely sensible.29 The 
appropriate conclusion is that this solution is not plausible. The 
other solution (of form (3)) is the MSV solution. It is learnable but 
not dynamically stable.30 Thus the conclusion of an analysis based 
on the requirement that a plausible RE equilibrium must be stable, 
learnable, and WF is that the system under discussion has no such 
equilibrium. That seems eminently sensible, for a model that is the 
combination of one explosive sector and one indeterminate sector 
with very little interaction. 

 Next we consider learnability for WF models under the second 
information assumption, for which the relevant conditions are that all 
eigenvalues of the matrices in conditions (13a)–(13c) have real parts 
less than 1.0. Let us assume that I – (A + C), (I – AΩ) and [I – (R' ⊗F)] 
are all PDD matrices, which makes the MOD solution both learnable 
and WF. First consider condition (13a), which implies that I – A(I + Ω) 
must have all eigenvalues with real parts that are positive. Using the 
definition of F, we can write 

(I – AΩ)(I – F) = (I – AΩ) [I – (I – AΩ)–1A] = (I – AΩ) – A = I – A(I + Ω). (27)

27. Incidentally, in that paper’s equation (29), the lower-left element of C is 0.3, 
not 0.5.

28. Which differs from the minimum-state-variable (MSV) solution in the sense 
of McCallum (2003b).

29. The non-WF conclusion is based on violations of both steady-state and impulse 
response requirements. For the other solution of form (3), the steady-state WF conditions 
are violated. 

30. For learning of explosive solutions, a modified condition pertaining to shock 
variances is required. See Evans and Honkapohja (2001, pp. 219–20).
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Now, our discussion above indicates that I – AΩ and I – F will 
both have eigenvalues with all real parts positive under the WF 
assumption, so equation (27) indicates that this property would 
carry over to I – A(I + Ω). This would not be the case, however, if the 
only specification is that I – (A + C), (I – AΩ) and [I – (R' ⊗F)] are 
P-matrices.

Even in the more favorable case, with PDD matrices, no general 
results pertaining to conditions (13b) and (13c) have been found. The 
problem is that sums of Kronecker products do not in general yield 
matrices for which eigenvalues are cleanly related to those of the 
individual matrices. Nevertheless, there are two special cases that can 
be treated readily. First, consider the case in which C = 0, so there 
are no predetermined variables in the solution, which implies that 
Ω = 0. Then, F = (I – AΩ)–1A = A, and thus condition (13a) becomes 
the same as (12a). Furthermore, (13b) is irrelevant with Ω = 0 and 
(13c) becomes (R' ⊗ A), which is the same as in (12c). So in this case, 
the two information assumptions yield the same E-stability conditions. 
Second, suppose that C ≠ 0, but that the exogenous variables are white 
noise, that is, R = 0. Then condition (13c) becomes (I ⊗ AΩ) and the 
result based on (I – AΩ)–1 shows that this condition will be satisfied 
if the latter matrix is PDD. But conditions pertaining to (13a) and 
(13b) are not necessarily satisfied. Of course, it is a simple matter to 
examine specific cases numerically. 

5. general issUes

A number of possible objections to the foregoing argument need 
to be addressed. Probably the most prominent among researchers in 
the area would be the fact that our analysis has been concerned only 
with solutions of form (3), which excludes sunspot solutions of the 
“resonant frequency” type. It is my position, however, that the learning 
process pertaining to solutions of this type is much less plausible 
than for solutions of form (3). In particular, the solutions are not of 
the standard vector-autoregression (VAR) form. Therefore, an agent 
who experimented with many different specifications of VAR models, 
using the economy’s generated time series data, would still not be led 
to such a solution. Indeed, it seems to me that arguments suggesting 
that that type of learning could exist in actual economies are utterly 
implausible. Of course, literally speaking, RE itself is implausible—as 
early critics emphasized. Nevertheless, RE is rightly regarded by 
mainstream researchers as the appropriate assumption for economic 
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analysis, especially policy analysis. That is the case because RE is 
fundamentally the assumption that agents optimize with respect to 
their expectational behavior, just as they do (according to neoclassical 
economic analysis) with respect to other basic economic activities such 
as selection of consumption bundles, selection of quantities produced 
and inputs utilized, etc.—for a necessary condition for optimization is 
that individuals eliminate any systematically erroneous component 
of their expectational behavior. Also, RE is doubly attractive (to 
researchers) from a policy perspective, for it assures that a researcher 
does not propose policy rules that rely upon policy behavior that is 
designed to exploit patterns of suboptimal expectational behavior 
by individuals. 

Another issue is the possible use of learning behavior not as 
a device for assessing the plausibility of rational expectations 
equilibria, but as a replacement for the latter. This type of approach is 
discussed by Evans and Honkapohja (2001) and has been prominent 
in the work of Orphanides and Williams (2005), among others. Use 
of constant-gain learning (Evans and Honkapohja, 2001) provides 
a sensible alternative to the decreasing-gain learning implicit in 
the LS learning/E-stability literature. This approach, however, 
does not seem to solve the “startup” problem, that is, the issue of 
how the economy will behave in the first several periods following 
the adoption of a new policy rule or the occurrence of some other 
structural change. It is highly unlikely that economies will move 
promptly to new RE equilibria following such a change, and I doubt 
that they would move promptly to a modeled learning path. In both 
cases, I share the opinion voiced by Lucas (1980), to the effect that, 
after a structural change (including policy regime changes), reliable 
analysis should pertain to the economy’s behavior after it has had 
time to settle into a new dynamic stochastic equilibrium.

6. ConClUsion

Let us now conclude with a very brief review of the points 
developed above. First, the paper reviews a previous result to the effect 
that, under the “first” information assumption that agents possess 
knowledge of current endogenous variables in the learning process, 
determinacy of a RE equilibrium is a sufficient but not necessary 
condition for least-squares learnability of that equilibrium. Thus, since 
learnability is an attractive necessary condition for plausibility of any 
equilibrium, there may exist a single plausible RE solution even in 



221Determinacy, Learnability, and Plausibility in Monetary Policy

cases of indeterminacy. In addition, the paper proposes and outlines 
a distinct criterion that plausible models should possess, termed 
“well formulated” (WF), that rules out infinite discontinuities in the 
model’s implied steady–state values of endogenous variables and in its 
impulse response functions. The paper then explores the relationship 
between this WF property and learnability, under the first information 
assumption, and finds that (although they often agree) neither implies 
the other. Extending the P-matrix requirement, implied for specified 
matrices by the WF property, to one that demands positive dominant-
diagonal matrices would guarantee both WF and learnability, but a 
suitable rationale for such a requirement has not been found. Finally, 
under the second information assumption, which gives the agents 
only lagged information on endogenous variables during the learning 
process, the situation is less favorable in the sense that learnability 
can be guaranteed only under special assumptions. 
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aPPendix 

To demonstrate that a very wide variety of linear RE models can be 
written in form (1)–(2), consider the formulation of King and Watson 
(1998) or Klein (2000), as exposited by McCallum (1998), as follows:
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Here vt is an AR(1) vector of exogenous variables (including shocks) 
with stable AR matrix R, while xt and kt are m1×1 and m2×1 vectors 
of non-predetermined and predetermined endogenous variables, 
respectively. It is assumed, without significant loss of generality, that 
B11 is invertible31 and that G2 = 0.32 Define y x k x kt t t t t= ′ ′ ′ ′ ′− −[ ]1 1  
and write the system in form (1) with ut = vt and the matrices given, 
as follows:
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This representation is important because it is well known that 
the system (A1) permits, via use of auxiliary variables, any finite 
number of lags, expectational leads, and lags of expectational leads 
for the basic endogenous variables. Also, any higher-order AR process 
for the exogenous variables can be written in AR(1) form.33 Thus it 
has been shown that the Evans and Honkapohja (2001) formulation 
is in fact rather general, although it does not pertain to asymmetric 
information models.

31. For the system (A1) to be cogent, each of the m1 non-predetermined variables 
must appear in at least one of the m1 equations of the first matrix row. Then the diagonal 
elements of B11 will all be non-zero and to avoid inconsistencies the rows of B11 must 
be linearly independent. This implies invertibility.

32. If it is desired to include a direct effect of vt on kt+1, this can be accomplished 
by defining an auxiliary variable (equal to vt-1) in xt (in which case vt remains in the 
information set for period t). Also, auxiliary variables can be used to include expectations 
of future values of exogenous variables.

33. Binder and Pesaran (1995) show that virtually any linear model can be put 
in form (1), but in doing so admit a more general specification than (2) for the process 
generating the exogenous variables.
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